In patients with acute venous thromboembolism (VTE), is fixed dose subcutaneous low molecular weight heparin (LMWH) more effective than adjusted dose unfractionated heparin (UFH) for reducing symptomatic recurrent VTE?

METHODS

22 RCTs (n = 8867) met the selection criteria. Categories of VTE included symptomatic deep venous thrombosis (DVT) of the leg without symptoms of pulmonary embolism (PE) (13 RCTs); PE only (2 RCTs); symptomatic DVT of the leg, with or without symptomatic PE; or asymptomatic DVT of the leg with symptomatic PE or symptomatic DVT or PE (7 RCTs). Preparations of LMWH evaluated included nadroparin, tinzaparin, enoxaparin, dalteparin, CY 222, certoparin, ardeparin, and reviparin. The rates of symptomatic recurrent VTE throughout follow up, major haemorrhage during the initial treatment, and all cause mortality at the end of follow up (3–6 mo) were lower in the LMWH group than in the UFH group (table). Subgroup analysis of patients with proximal DVT also showed that rates of symptomatic recurrent VTE at the end of follow up (relative risk reduction [RRR] 44%, 95% CI 24 to 55), major haemorrhage during the initial treatment (RRR 51%, CI 15 to 72), and all cause mortality at the end of follow up (RRR 37%, CI 15 to 53) were lower in the LMWH group than in the UFH group.

CONCLUSION

In patients with acute venous thromboembolism, fixed dose subcutaneous low molecular weight heparin is more effective than adjusted dose unfractionated heparin for reducing the incidence of symptomatic recurrent venous thromboembolism, major haemorrhage, and all cause mortality.

Abstract and commentary also appear in ACP Journal Club.

Commentary

Previous meta-analyses comparing fixed dose LMWH with adjusted dose UFH for the treatment of acute VTE showed that LMWH reduces all cause mortality, and found trends for reduction of recurrent VTE and major bleeding.1,2 The meta-analysis by van Dongen et al of used a comprehensive search strategy and included the most recent RCTs (all done after 1999) and thus presents an aggregate of the most current evidence. Furthermore, the large sample size shows that the review had sufficient power to find differences in efficacy. Their analysis confirmed that LMWH confers a survival advantage and significantly reduces the incidence of major bleeding and recurrent VTE.

Limitations include the use of trials that compared LMWH with subcutaneous UFH, which may have contributed to the finding of superiority of LMWH; lack of an analysis examining whether the superiority of LMWH is maintained when limited to trials examining patients treated with LMWH primarily at home; the combining of 8 different LMWH preparations; and the small number of trials examining symptomatic PE. Despite these limitations, the rigorous methodology and consistency of the results with those of previous analyses support the main findings of improved outcomes with LMWH.

Although LMWH has previously been shown to be at least as safe and efficacious as UFH and to allow selected patients with VDT to be treated at home, many patients are still often hospitalised and treated with UFH.3 Potential barriers to home treatment with LMWH are medication cost, inconsistent availability of the medication from area pharmacies, patient education about self injection, and outpatient initiation of oral anti-coagulation.

Given the data showing that LMWH improves outcomes and provides the opportunity to avoid hospitalisation for many patients, it is time to overcome any remaining obstacles and adopt LMWH as the standard of care for appropriately selected patients with VTE.

Andrew Dunn, MD
Mount Sinai Medical Center
New York, New York, USA

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Follow up</th>
<th>Number of trials (n)</th>
<th>Weighted event rates</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent venous thromboembolism</td>
<td>During treatment</td>
<td>15 (6060)</td>
<td>1.4%</td>
<td>2.4%</td>
<td>31% (2 to 51)</td>
<td>100 (100 to 100)</td>
</tr>
<tr>
<td></td>
<td>3 months</td>
<td>13 (5831)</td>
<td>3.0%</td>
<td>5.0%</td>
<td>30% (11 to 46)</td>
<td>50 (34 to 100)</td>
</tr>
<tr>
<td></td>
<td>6 months</td>
<td>6 (2781)</td>
<td>3.7%</td>
<td>5.7%</td>
<td>31% (3 to 51)</td>
<td>50 (34 to 100)</td>
</tr>
<tr>
<td></td>
<td>3–6 months</td>
<td>18 (8122)</td>
<td>3.4%</td>
<td>5.4%</td>
<td>31% (15 to 44)</td>
<td>50 (34 to 100)</td>
</tr>
<tr>
<td>Major haemorrhage</td>
<td>During treatment</td>
<td>19 (7124)</td>
<td>1.0%</td>
<td>2.0%</td>
<td>42% (16 to 60)</td>
<td>100 (100 to 100)</td>
</tr>
<tr>
<td></td>
<td>3–6 months</td>
<td>18 (8054)</td>
<td>5.0%</td>
<td>6.0%</td>
<td>23% (7 to 36)</td>
<td>100 (50 to 100)</td>
</tr>
</tbody>
</table>

*Abbreviations defined in glossary; weighted event rates, RRR, NNT, and CI calculated from data in article using a fixed effect models.
Review: low molecular weight heparin reduces recurrent venous thromboembolism better than unfractionated heparin

Evid Based Med 2005 10: 80
doi: 10.1136/ebm.10.3.80

Updated information and services can be found at:
http://ebm.bmj.com/content/10/3/80

These include:

References
This article cites 3 articles, 1 of which you can access for free at:
http://ebm.bmj.com/content/10/3/80#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epidemiologic studies (1092)
- Clinical trials (epidemiology) (1594)
- Pulmonary embolism (73)
- Venous thromboembolism (109)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/