In patients with status epilepticus (SE), which anticonvulsant drugs are most effective?

METHODS

Data sources Cochrane Epilepsy Group Specialised Register, Cochrane Central Database of Controlled Trials, Medline, EMBASE/Excerpta Medica, and reference lists.

Study selection and assessment Randomised or quasi-randomised controlled trials (RCTs) that compared any anticonvulsant drug with placebo or another anticonvulsant drug in patients with premonitory, early stage, established, or refractory SE. Quality assessment of individual studies included randomisation method, baseline comparability of groups, blinding, and intention to treat analysis.

Outcomes Outcomes included development of SE, death, continuation of seizures, prevention of SE requiring use of a different drug or general anaesthesia for control, long term disabling sequelae, and need for ventilatory support.

MAIN RESULTS

11 RCTs (n = 2017) met the selection criteria. Patients had premonitory (5 RCTs), established (1 RCT), and mixed SE (2 RCTs), and 2 RCTs did not define the status. Superior results were seen with intravenous (IV) lorazepam for cessation of seizures and reducing risk of SE that required a second drug (table). IV diazepam was better than placebo for reducing death, continuation of seizures, SE, and ventilatory support (table). Diazepam gel was better than placebo, and 30 mg of diazepam gel was superior to 20 mg for reducing continuation of seizures (table). No differences were seen for comparisons of lorazepam with diazepam plus phenytoin, phenobarbital, or midazolam; diazepam with midazolam (IV or intramuscular); diazepam plus phenytoin with phenobarbital or phenytoin alone; or phenobarbital with phenytoin.

CONCLUSIONS

In patients with status epilepticus, lorazepam is better than diazepam, phenytoin, or placebo for cessation of seizures, and diazepam is better than placebo. Lorazepam is better than placebo or diazepam for preventing status epilepticus requiring a different drug or general anaesthesia, and diazepam is better than placebo.

Abstract and commentary also appear in ACP Journal Club and a modified version of the abstract appears in Evidence-Based Nursing.

Commentary

SE is a neurological emergency with a 30 day mortality rate of about 22%, contingent on duration before treatment, underlying cause, and patient age. Prasad et al have attempted to determine which initial pharmacological treatment for SE is best in terms of rapidity of action, maintenance of efficacy, and incidence of adverse events. Most of the studies enrolled patients with “premonitory SE,” which, while not meeting the criteria for “established SE,” is generally thought to be a condition best addressed early and aggressively.

Their results affirm the consensus of standard clinical practice, but underscore the diversity that exists among investigator definitions of SE and outcome measures. Their strongest conclusion, that lorazepam is more effective than diazepam or phenytoin, reinforces guidelines published >10 years ago, matches the preferences of surveyed neurologists, and is in turn buttressed by the theoretical pharmacokinetic advantages of lorazepam.

The review shows that any of the agents investigated perform better than placebo regardless of administration route, although routes were not a focus of study. Despite this lack of comparative data, we recommend IV formulations when available, and rectal formulations when IV is not feasible—reserving the intramuscular route as a last resort. This review also does not address what to do when initial treatments fail, but a related review concludes that continuous IV phenobarbital, titrated to electroencephalographic background suppression, produces the most favourable results.

Prasad et al highlight the need for further RCTs that use a standardised approach to the classification of SE, the dosing and route of compared agents, and common outcome measures.

J Craig Henry, MD
Robert Holloway, MD, MPH
University of Rochester Medical Center
Rochester, New York, USA

Anticonvulsant drugs for status epilepticus to hospital discharge

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Number of trials (n)</th>
<th>Comparisons</th>
<th>Event rates</th>
<th>RRR (95% CI)</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-cessation of seizures</td>
<td>2 (264)</td>
<td>Lorazepam vs diazepam</td>
<td>24% 38%</td>
<td>16% (10 to 55)</td>
<td>8 (5 to 25)</td>
</tr>
<tr>
<td></td>
<td>1 (137)</td>
<td>Lorazepam vs placebo</td>
<td>41% 79%</td>
<td>48% (29 to 62)</td>
<td>3 (2 to 5)</td>
</tr>
<tr>
<td></td>
<td>1 (198)</td>
<td>Lorazepam vs phenytoin</td>
<td>35% 56%</td>
<td>38% (14 to 55)</td>
<td>3 (2 to 13)</td>
</tr>
<tr>
<td></td>
<td>1 (139)</td>
<td>Diazepam vs placebo</td>
<td>57% 79%</td>
<td>72% (28 to 43)</td>
<td>5 (3 to 17)</td>
</tr>
<tr>
<td></td>
<td>2 (165)</td>
<td>Intrarectal diazepam gel vs placebo</td>
<td>32% 72%</td>
<td>57% (38 to 70)</td>
<td>3 (2 to 4)</td>
</tr>
<tr>
<td></td>
<td>1 (39)</td>
<td>Intrarectal diazepam gel 30 mg vs 20 mg</td>
<td>28% 71%</td>
<td>61% (14 to 82)</td>
<td>3 (2 to 7)</td>
</tr>
<tr>
<td>Continuation of status epileptic</td>
<td>2 (264)</td>
<td>Lorazepam vs diazepam</td>
<td>24% 39%</td>
<td>37% (12 to 55)</td>
<td>7 (4 to 25)</td>
</tr>
<tr>
<td>requiring a different drug</td>
<td>1 (137)</td>
<td>Lorazepam vs placebo</td>
<td>41% 79%</td>
<td>48% (29 to 62)</td>
<td>3 (2 to 5)</td>
</tr>
<tr>
<td></td>
<td>1 (139)</td>
<td>Diazepam vs placebo</td>
<td>57% 79%</td>
<td>72% (28 to 43)</td>
<td>5 (3 to 17)</td>
</tr>
<tr>
<td>Death</td>
<td>1 (139)</td>
<td>Diazepam vs placebo</td>
<td>4.4% 15%</td>
<td>72% (2 to 92)</td>
<td>10 (5 to 100)</td>
</tr>
<tr>
<td>Ventilatory support</td>
<td>1 (139)</td>
<td>Diazepam vs placebo</td>
<td>8.8% 23%</td>
<td>61% (6 to 84)</td>
<td>8 (4 to 50)</td>
</tr>
</tbody>
</table>

*Abbreviations defined in glossary; weighted event rates, RRR, NNT, and CI calculated from data in article using a fixed effects model. All drugs given intravenously unless otherwise noted. Event rates with 1 trial are unweighted.
Review: lorazepam provides the best control for status epilepticus

Evid Based Med 2006 11: 54
doi: 10.1136/ebm.11.2.54

Updated information and services can be found at:
http://ebm.bmj.com/content/11/2/54

These include:

References
This article cites 4 articles, 1 of which you can access for free at:
http://ebm.bmj.com/content/11/2/54#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Epilepsy and seizures (38)
- Drugs: musculoskeletal and joint diseases (349)
- Drugs: psychiatry (59)
- Clinical trials (epidemiology) (1594)
- Epidemiologic studies (1092)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/