Irbesartan was renoprotective in patients with type 2 diabetes, hypertension, and microalbuminuria

QUESTION: In patients with type 2 diabetes mellitus, hypertension, and persistent microalbuminuria, what is the effectiveness of the angiotensin II receptor antagonist (ARA) irbesartan for delaying or preventing the development of nephropathy?

Design
Randomised [allocation concealed†],†‡ blinded [clinicians, patients, and outcome assessors]‡ placebo controlled trial with 2 years of follow up.

Setting
96 centres worldwide.

Patients
611 patients between 30 and 70 years of age who had type 2 diabetes; hypertension defined as systolic blood pressure > 135 mm Hg or diastolic blood pressure > 85 mm Hg, or both; persistent microalbuminuria defined as an albumin excretion rate of 20 to 200 µg/minute; and a serum creatinine concentration < 133 µmol/l for men or < 97 µmol/l for women. Exclusion criteria were non-diabetic kidney disease, cancer, fatal disease, or indication for angiotensin converting enzyme (ACE) inhibitors or ARAs. 590 of 611 (97%) patients (mean age 58 y, 68% men) completed follow up.

Intervention
Patients were allocated to receive irbesartan, 150 mg/day (n=195) or 300 mg/day (n=194), or placebo (n=201). Patients were treated with antihypertensive drugs as needed, but ACE inhibitors were not allowed. Patients continued their usual diabetes care. Dietary salt and protein were not restricted.

Table: Irbesartan v placebo for progression to nephropathy in type 2 diabetes, hypertension, and persistent microalbuminuria at 2 years

<table>
<thead>
<tr>
<th>Irbesartan dose</th>
<th>Irbesartan</th>
<th>Placebo</th>
<th>Adjusted hazard ratio (95% CI)</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 mg/day</td>
<td>9.7%</td>
<td>14.9%</td>
<td>0.56 (0.31 to 0.99)</td>
<td>16 (10 to 728)</td>
</tr>
<tr>
<td>300 mg/day</td>
<td>5.2%</td>
<td>14.9%</td>
<td>0.32 (0.15 to 0.65)</td>
<td>11 (8 to 21)</td>
</tr>
</tbody>
</table>

‡Abbreviations defined in glossary; NNT and its CI calculated by using hazard ratios provided in the article; hazard ratios adjusted for baseline microalbuminuria and blood pressure during the study.

Main outcome measure
Development of nephropathy, defined by a urinary albumin excretion rate > 200 µg/minute that is at least 30% higher than the baseline rate.

Main results
Analysis was by intention to treat. At 2 years, unadjusted analyses showed that placebo was associated with a higher incidence of progression to nephropathy than was irbesartan, 300 mg/day (p < 0.001), but not irbesartan, 150 mg/day (p=0.08). After adjusting for baseline microalbuminuria and blood pressure during the study, placebo was associated with a higher incidence of progression to nephropathy than was irbesartan, 300 mg/day (p < 0.001), and irbesartan, 150 mg/day (p=0.05) (table).

Conclusion
In patients with type 2 diabetes mellitus, hypertension, and persistent microalbuminuria, irbesartan delayed progression to nephropathy independent of its effect on blood pressure.

See glossary.
†Information provided by author.

COMMENTARY
Type 2 diabetes mellitus causes microvascular and macrovascular complications that pose public health concerns worldwide. The end organ damage resulting from microvascular complications manifests itself as retinopathy, neuropathy, and nephropathy. Diabetic nephropathy causes almost 40% of all incident dialysis cases in the USA. Once end stage renal disease (ESRD) has developed, the median survival of patients with type 2 diabetes is 2 years, and most of these deaths are from cardiovascular disease.†

In the spectrum of renal disease complicating diabetes, microalbuminuria precedes overt diabetic nephropathy. This stage is readily detectable, is associated with an increased risk for progression to diabetic nephropathy, and is potentially reversible.

Parving et al have shown that treating patients who have type 2 diabetes, hypertension, and microalbuminuria with irbesartan, 300 mg/day, reduced progression to overt nephropathy at 2 years; lower doses (150 mg/d) were less effective. This beneficial effect of irbesartan was independent of blood pressure lowering and glycaemic control. In addition, irbesartan was more likely than placebo to cause regression to normoalbuminuria. The findings support the role of rennin–angiotensin system blockade with irbesartan in preventing progression to albuminuria.

The Microvascular Heart Outcomes Prevention Evaluation (MICRO-HOPE) study enrolled 3577 patients with diabetes, 32% of whom had microalbuminuria. The rate of progression to overt nephropathy was lower in the ramipril group than in the placebo group (relative risk reduction [RRR] 24%). Although the effects of irbesartan (RRR 66%) seemed to be greater in preventing progression to overt nephropathy, no study exists with clinically important outcomes comparing ARAs to ACE inhibitors.

continued on next page
Irbesartan reduced progression of nephropathy caused by type 2 diabetes independent of the effect on blood pressure

QUESTION: In patients with type 2 diabetes mellitus, diabetic nephropathy, and hypertension, what effect does the angiotensin II receptor antagonist (ARA) irbesartan and the calcium channel blocker amlodipine have on renal disease?

Design
Randomised (allocation concealed*), blinded (clinicians, patients, outcome assessors, and statisticians),* placebo controlled trial with mean follow up of 2.6 years (the Irbesartan Diabetic Nephropathy Trial [IDNT]).

Setting
210 clinical centres worldwide.

Patients
1715 patients between 30 and 70 years of age (mean age 59 y, 66% men) who had type 2 diabetes, hypertension, proteinuria defined as a urinary protein excretion rate > 900 mg/24 hours, and serum creatinine concentrations between 88 and 265 μmol/l in women and between 106 and 265 μmol/l in men. Follow up was 99%.

Intervention
Patients were allocated to irbesartan, titrated to 300 mg/day (n=579); amlodipine, titrated to 10 mg/day (n=567); or placebo (n=569). Treatment targeted a systolic blood pressure ≤ 135 mm Hg and a diastolic blood pressure ≤ 85 mm Hg by using drugs other than angiotensin converting enzyme (ACE) inhibitors, angiotensin receptor blockers, and calcium channel blockers, if necessary.

Main outcome measures
The primary outcome was the composite of a doubling of the baseline serum creatinine concentration, onset of end stage renal disease, or all cause mortality. The secondary outcome was the composite of cardiovascular mortality, non-fatal myocardial infarction, heart failure resulting in admission to hospital, neurological deficit caused by a cerebrovascular event, or above ankle lower limb amputation.

Main results
Analysis was by intention to treat. After adjusting for mean blood pressure, irbesartan lowered the risk for the primary composite outcome more than did amlodipine (p=0.005) or placebo (p=0.03); this outcome did not differ for amlodipine and placebo (p=0.47) (table). The 3 groups did not differ for the secondary composite outcome.

Conclusion
Irbesartan v placebo 33% v 39% 19% (1 to 33) 16 (8 to 121)
Amlodipine v placebo 41% v 39% 7% (–11 to 29) Not significant

Comparisons Event rates Adjusted RRR (95% CI) NNT (CI)
Irbesartan v amlodipine 33% v 41% 24% (8 to 37) 12 (7 to 35)
Irbesartan v placebo 33% v 39% 19% (1 to 33) 16 (8 to 121)
 Adjusted RRI (CI) NNH
Amlodipine v placebo 41% v 39% 7% (–11 to 29) Not significant

†Composite outcome — doubling of baseline serum creatinine level, end stage renal disease, or all cause mortality. Abbreviations defined in glossary; RRR, RRI, and CI adjusted for mean arterial blood pressure; NNT, NNH, and CI calculated from data in article.
Losartan was renoprotective in diabetic nephropathy independent of its effect on blood pressure

QUESTION: In patients with type 2 diabetes mellitus and nephropathy, what is the renoprotective effect of the angiotensin II receptor antagonist (ARA) losartan?

Design
Randomised (allocation concealed), blinded (clinicians, patients, outcome assessors, and statisticians), placebo controlled trial with mean follow up of 3.4 years (the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan [RENAAL] Study).

Setting
250 centres worldwide.

Patients
1513 patients between 31 and 70 years of age (mean age 60 y; 63% men) who had type 2 diabetes and nephropathy defined as a urinary albumin : creatinine ratio > 300 mg/g and a serum creatinine concentration between 115 and 265 µmol/l (≥ 133 µmol/l for men weighing > 60 kg). Exclusion criteria included type 1 diabetes and non-diabetic renal disease. Follow up was 99.8%.

Intervention
After stratification by baseline level of proteinuria, patients were allocated to receive losartan, 50 to 100 mg/day (n=751), or placebo (n=762). Conventional antihypertensive treatment (excluding angiotensin I converting enzyme inhibitors and ARAs) was adjusted to target a systolic and diastolic blood pressure < 140 and < 90 mm Hg, respectively.

Main outcome measures
The primary outcome was the composite of a doubling of the baseline serum creatinine concentration, end stage renal disease (ESRD), or death. The secondary outcome was the composite of cardiovascular morbidity or mortality.

Main results
Analysis was by intention to treat. Losartan reduced the risk for the primary composite outcome (unadjusted p=0.02, p=0.03 after adjustment for blood pressure), doubling of the baseline serum creatinine concentration (unadjusted p=0.006), and ESRD (unadjusted p=0.002) more than did placebo (table). However, losartan and placebo did not differ for incidence of death (unadjusted p=0.88 (table) or the secondary composite outcome of cardiovascular morbidity or mortality (p=0.26).

Conclusions
Losartan was renoprotective in patients with type 2 diabetes mellitus and nephropathy. This effect was beyond that attributable to blood pressure control.

*See glossary.

COMMENTARY—continued from previous page

Patients and their clinicians must now consider using these 2 classes of drugs. Treatment for individual patients should consider the risk for progression of renal disease, risk for future cardiovascular events, and blood pressure.

The treatment of type 2 diabetes should start early in the course of the disease process. At the normoalbuminuric or microalbuminuric stage, ACE inhibitors should be considered first line agents because of their proven efficacy in preventing progression to overt nephropathy and reducing cardiovascular events. Attention should also focus on blood pressure control and modification of other risk factors for cardiovascular disease.

Once nephropathy has developed, the importance of rennin–angiotensin system blockade persists, but the choice of drug is less clear. Clinicians should expect to use 3 to 4 different drugs to achieve a good blood pressure reading. Although further research using clinically important outcomes is required, dual blockade of the rennin–angiotensin system with a combined ACE inhibitor and ARA seems promising. This combination may offer the best of both treatment strategies and result in lower incidence rates of devastating microvascular and macrovascular complications in people with type 2 diabetes.

Christian G Rabbat, MD
McMaster University
Hamilton, Ontario, Canada

References

Irbesartan reduced progression of nephropathy caused by type 2 diabetes independent of the effect on blood pressure

Evid Based Med 2002 7: 81
doi: 10.1136/ebm.7.3.81

Updated information and services can be found at:
http://ebm.bmj.com/content/7/3/81

These include:

References
This article cites 4 articles, 0 of which you can access for free at:
http://ebm.bmj.com/content/7/3/81#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Diabetes (365)
- Renal medicine (103)
- Hypertension (403)
- Drugs: cardiovascular system (754)
- Drugs: musculoskeletal and joint diseases (349)
- Epidemiologic studies (1092)
- Drugs: CNS (not psychiatric) (262)
- Clinical trials (epidemiology) (1594)
- Ischaemic heart disease (419)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/