Diagnosis

Magnetic resonance direct thrombus imaging was accurate in suspected deep venous thrombosis

QUESTION: In patients with suspected deep venous thrombosis (DVT), is magnetic resonance direct thrombus imaging (MRDTI) an accurate diagnostic test?

Design
Blinded comparison of MRDTI with venography.

Setting
A university based hospital in Nottingham, UK.

Patients
101 eligible patients (age range 20 to 95 y) from a group of 338 consecutive patients with suspected DVT who had routine venography. Patients with a positive result on venography and a subset of 25% of patients with a negative result, selected according to a predetermined sequence, were included. Exclusion criteria were pregnancy, known contrast allergy, renal failure, no leg symptoms, failed or inconclusive venography or MRDTI, contraindications to magnetic resonance imaging, or claustrophobia.

Main outcome measures
Sensitivity, specificity, and likelihood ratios for all DVT, isolated calf DVT, and proximal DVT, which included femoropopliteal and iliofemoral DVT.

Main results
The sensitivity, specificity, and likelihood ratios for DVT with MRDTI testing done by the experienced radiologist are in the table. The results for the non-radiologist reader were similar to those of the radiologist (κ=0.94, 95% CI 0.88 to 1.00).

Conclusion
In patients with suspected deep venous thrombosis, magnetic resonance direct thrombus imaging was accurate and reproducible in diagnosing isolated calf and proximal deep venous thrombosis.

Diagnostic characteristics for magnetic resonance direct thrombus imaging in suspected deep venous thrombosis (DVT)

<table>
<thead>
<tr>
<th>Disease</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (CI)</th>
<th>+LR</th>
<th>–LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>All DVT</td>
<td>96% (89 to 99)</td>
<td>90% (79 to 96)</td>
<td>9.24</td>
<td>0.04</td>
</tr>
<tr>
<td>Isolated calf DVT†</td>
<td>92% (86 to 100)</td>
<td>90% (77 to 97)</td>
<td>8.8</td>
<td>0.09</td>
</tr>
<tr>
<td>Proximal DVT</td>
<td>98% (87 to 100)</td>
<td>100% (94 to 100)</td>
<td>–</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Diagnostic terms defined in glossary; sensitivity, specificity, and CIs for isolated calf and proximal DVT calculated from data in article; LR+ for all results calculated from data in article.

†Based on 60 patients with isolated calf DVT or no DVT.

COMMENTARY

Ultrasonography is the diagnostic test of choice for suspected DVT. Examination of the femoral and popliteal veins, which are involved in 80% of symptomatic DVTs, is accurate and easy to do. Examination of the pelvic and calf veins is less accurate and more difficult to do. However, these veins do not need to be examined routinely because isolated iliac vein thrombosis (ie, without involvement of the common femoral vein) is uncommon (probably < 1% of DVT) and isolated calf DVT is associated with a low risk for pulmonary embolism provided that extension to the proximal veins does not subsequently occur. Because ultrasonography is unable to conclusively “rule out” DVT at presentation, a repeated ultrasonographic examination after 1 week is often required to exclude extending thrombosis.

Fraser et al have shown that MRDTI is accurate for the diagnosis of symptomatic DVT. A normal MRDTI excluded isolated calf DVT and, although it was not specifically reported in this study, the test is also likely to exclude isolated iliac DVT. These results indicate substantial advantages over ultrasonography because they obviate the need for a repeated examination after 1 week. Another potential advantage of MRDTI is that accurate diagnosis of isolated calf DVT (which is present in about 5% of patients with suspected DVT) would enable treatment with anticoagulant treatment. Such treatment improves short term symptoms and may reduce the long term risk for recurrent venous thromboembolism and the post-thrombotic syndrome. Consequently, routine diagnosis and treatment of symptomatic isolated calf DVT are expected to be preferable to only treating initially isolated calf DVT that is initially isolated but is found to have extended on a follow up ultrasonographic examination of the proximal veins. If further studies confirm that MRDTI can reliably diagnose and exclude all lower limb DVT, and if this technique becomes accessible and affordable, it will be an important advance in the diagnosis of venous thrombosis.

Clive Kearon, MB, PhD
Henderson General Hospital, McMaster Clinic
Hamilton, Ontario, Canada

Magnetic resonance direct thrombus imaging was accurate in suspected deep venous thrombosis

Evid Based Med 2002 7: 126
doi: 10.1136/ebm.7.4.126

Updated information and services can be found at:
http://ebm.bmj.com/content/7/4/126

These include:

References
This article cites 3 articles, 0 of which you can access for free at:
http://ebm.bmj.com/content/7/4/126#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical diagnostic tests (440)
- Radiology (337)
- Radiology (diagnostics) (251)
- Venous thromboembolism (109)
- Anxiety disorders (including OCD and PTSD) (27)
- Drugs: cardiovascular system (754)
- Immunology (including allergy) (571)
- Pregnancy (333)
- Pulmonary embolism (73)
- Renal medicine (103)
- Stroke (546)
- EBM Diagnosis (145)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/