Chemoprophylaxis with aspirin (81 mg daily) reduced the incidence of colorectal adenomas in people at risk

QUESTION: In persons at risk (recent history of histologically documented adenomas), is chemoprophylaxis with aspirin more effective than placebo for reducing the incidence of colorectal adenomas?

Design
Randomised (allocation concealed*†, blinded (clinicians and patients),† placebo controlled trial with a mean follow up of 33 months.

Setting
9 clinical centres in Canada and the US.

Patients
1121 patients (mean age 57 ± 64% men) who had ≥1 of the following: ≥1 histologically confirmed colorectal adenoma removed <3 months before recruitment; ≥1 histologically confirmed adenoma removed ≤16 months before recruitment and a lifetime history of ≥2 confirmed adenomas; or a histologically confirmed adenoma ≥1 cm in diameter removed ≤16 months before recruitment. Exclusion criteria included a history of a familial colorectal cancer syndrome, invasive colorectal cancer, and malabsorption syndromes. Follow up was 97%.

Intervention
Patients were allocated to aspirin, 325 mg/day (n=372) or 81 mg/day (n=377), or placebo (n=372).

Main outcome measure
Number of patients in whom ≥1 colorectal adenoma was detected at ≥1 year of follow up.

Main results
At ≥1 year, ≥1 colorectal adenoma was detected in fewer patients who received aspirin, 81 mg, than in those who received placebo (table). The 325 mg aspirin and placebo groups did not differ for incidence of colorectal adenomas.

Conclusion
In persons at risk (with a recent history of colorectal adenomas), chemoprophylaxis with aspirin (81 mg daily) was more effective than placebo for reducing the incidence of new colorectal adenomas.

*See glossary.
†Information provided by author.

COMMENTARY
A series of animal experiments as well as epidemiological studies dating back to the early 1980s have supported the protective effects of non-steroidal anti-inflammatory drugs against the development of colorectal adenomas. Over time, these studies have been consistent and positive, and now, with the studies by Baron and colleagues and Sandler et al, we can add 2 well designed, randomised, placebo controlled trials to this body of evidence.

In the study by Baron et al, 2 doses of aspirin, 81 mg and 325 mg daily, were compared with placebo. A modest 19% reduction in the relative risk of any adenoma was found in patients who received aspirin, 81 mg/day, but no significant protection was found in those who received aspirin, 325 mg/day, when compared with placebo. In the study by Sandler et al only 1 dose of aspirin (325 mg/day) was evaluated. A 36% reduction in the relative risk for ≥1 polyp was found. The greater benefit observed in the study by Sandler et al may be attributed to differences in the populations of the 2 studies. Both recruited patients at “high risk” for polyps, but Sandler et al selected patients with a history of colorectal cancer, whereas Baron et al selected those with a history of polyps. The side effects from regular use of aspirin were similar to placebo in the study by Sandler et al. However, in the study by Baron et al, the incidence of stroke was of concern; there were none among those who received placebo, 2 among those who received aspirin, 81 mg/day, and 5 among those who received aspirin, 325 mg/day (p=0.06).

The results from these studies raise several important questions: Firstly, how does aspirin protect against adenoma formation? In a separate study, it has been proposed that aspirin might increase the catabolism of carcinogenic polyamines. The most commonly proposed mechanism of action is inhibition of cyclooxygenase enzymes and subsequent inhibition of prostaglandin synthesis. Prostaglandin E2 is the most abundant prostaglandin in colorectal tumours and can block apoptosis. It has also been reported that the doses of aspirin from 81 mg to 650 mg daily are equally effective at inhibiting the production of prostaglandin E2 in the rectal mucosa. Similarly, no dose effect is evident for aspirin used in cardiovascular prophylaxis. Therefore, if a physician were to

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Comparisons</th>
<th>Event rates</th>
<th>RRR (95% CI)</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 colorectal adenoma detected</td>
<td>Aspirin, 81 mg v placebo</td>
<td>38% v 47%</td>
<td>19% (3.8 to 32)</td>
<td>12 (7 to 60)</td>
</tr>
<tr>
<td></td>
<td>Aspirin, 325 mg v placebo</td>
<td>45% v 47%</td>
<td>4.3% (-12 to 18)</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

†Abbreviations defined in glossary; RRR, NNT, and CI calculated from data in article.

Continued on next page
Aspirin prevented new colorectal adenomas in patients with previous colorectal cancer

QUESTION: In patients with previous colorectal cancer, is aspirin effective for preventing the occurrence of new colorectal adenomas?

Design
Randomised (allocation concealed*), blinded (investigators, patients, clinicians, data collectors, and outcome assessors)* placebo controlled trial with median follow up of 31 months (The Colorectal Adenoma Prevention Study).

Setting
39 cancer centres in the US.

Patients
635 patients who were 30–80 years of age (mean age 62 y, 52% men) and previously had curative resection of early stage colon or rectal cancer and colonoscopy to the caecum with removal of all polyps within 4 months before study entry. Exclusion criteria included recent use of aspirin or non-steroidal anti-inflammatory drugs, poor general health, expected survival < 5 years, pregnancy or nursing, familial polyposis, invasive cancer, and cardiovascular disease. Follow up was 81%.

Intervention
After a 3 month run in period, patients were allocated to enteric coated aspirin, 325 mg/day (n=317), or identical placebo (n=318).

Main outcome measures
Primary outcomes were the detection of adenomas after randomisation, time to detection of a first adenoma, and proportion with advanced adenomas (≥ 1 cm in diameter or villous components).

Main results
The aspirin and placebo groups had a similar mean number of colonoscopic examinations (1.60 v 1.68, p=0.13). The aspirin group was associated with a lower mean number of adenomas detected during the study than the placebo group (0.30 v 0.49, p=0.003). Furthermore, fewer patients in the aspirin group had ≥ 1 adenoma detected during the study than did those in the placebo group (table). The groups did not differ for proportions of patients with advanced adenomas.

Conclusion
In patients with previous colorectal cancer, aspirin was effective for preventing the occurrence of new colorectal adenomas.

Aspirin v placebo for colorectal adenomas in previous colorectal cancer†

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Aspirin</th>
<th>Placebo</th>
<th>Adjusted hazard ratio (95% CI)‡</th>
<th>NNT (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥1 colorectal adenoma detected</td>
<td>17%</td>
<td>27%</td>
<td>0.64 (0.43 to 0.94)</td>
<td>9 (6 to 29)</td>
</tr>
</tbody>
</table>

*See glossary.

COMMENTARY—continued from previous page
recommend aspirin to prevent colorectal polyps, the smaller dose would seem justifiable and may minimise rates of such other adverse events as gastrointestinal bleeding.

Aspirin should not replace endoscopic surveillance or be recommended for everyone. However, for persons at high risk of developing adenomas, low dose aspirin can be added with assurance that it is reasonably effective and safe.

James E Shaw, MD MPH
Virginia Commonwealth University Health System, Richmond, Virginia, USA

Chemoprophylaxis with aspirin (81 mg daily) reduced the incidence of colorectal adenomas in people at risk

Evid Based Med 2003 8: 178-179
doi: 10.1136/ebm.8.6.178

Updated information and services can be found at:
http://ebm.bmj.com/content/8/6/178

These include:

References
This article cites 5 articles, 3 of which you can access for free at:
http://ebm.bmj.com/content/8/6/178#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

- Clinical trials (epidemiology) (1594)
- Epidemiologic studies (1092)
- Drugs: musculoskeletal and joint diseases (349)
- Stroke (546)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/