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Abstract
A network meta- analysis combines the evidence 
from existing randomised trials about the 
comparative efficacy of multiple treatments. It 
allows direct and indirect evidence about each 
comparison to be included in the same analysis, 
and provides a coherent framework to compare 
and rank treatments. A traditional network meta- 
analysis uses aggregate data (eg, treatment effect 
estimates and standard errors) obtained from 
publications or trial investigators. An alternative 
approach is to obtain, check, harmonise and 
meta- analyse the individual participant data 
(IPD) from each trial. In this article, we describe 
potential advantages of IPD for network meta- 
analysis projects, emphasising five key benefits: 
(1) improving the quality and scope of information 
available for inclusion in the meta- analysis, (2) 
examining and plotting distributions of covariates 
across trials (eg, for potential effect modifiers), 
(3) standardising and improving the analysis of 
each trial, (4) adjusting for prognostic factors to 
allow a network meta- analysis of conditional 
treatment effects and (5) including treatment–
covariate interactions (effect modifiers) to allow 
relative treatment effects to vary by participant- 
level covariate values (eg, age, baseline depression 
score). A running theme of all these benefits is 
that they help examine and reduce heterogeneity 
(differences in the true treatment effect between 
trials) and inconsistency (differences in the true 
treatment effect between direct and indirect 
evidence) in the network. As a consequence, an 
IPD network meta- analysis has the potential for 
more precise, reliable and informative results 
for clinical practice and even allows treatment 
comparisons to be made for individual patients 
and targeted populations conditional on their 
particular characteristics.

Introduction
A network meta- analysis (NMA) project compares 
multiple treatments that have been evaluated in 
existing randomised trials.1 A conventional NMA 
uses aggregate data (AD) on treatment effects 
extracted from study publications, such as esti-
mates of odds ratios (ORs), hazard ratios (HRs) 
or mean differences and corresponding standard 
errors, or the total participants and events per 
treatment group. An alternative approach is an 

NMA of individual participant data (IPD), in 
which the participant- level data are obtained from 
multiple studies then checked, harmonised and 
synthesised.2 IPD refers to the raw information 
recorded for each participant in a study, such as 
baseline characteristics, prognostic factors, treat-
ments received, outcomes and follow- up details. 
In this article, we describe the potential bene-
fits that IPD offers for NMA projects compared 
with using AD, emphasising how IPD enables 
more precise, reliable and informative results for 
patients and clinical decision makers. This work 
adapts and extends our recent book chapter on 
this topic.3

WHAT IS ALREADY KNOWN ON THIS 
TOPIC

 ⇒ A network meta- analysis provides a 
framework to compare and rank all 
available treatments for a specific 
disease, using both direct evidence 
and indirect evidence. Most network 
meta- analysis projects use aggregate 
data obtained from study publications 
or study authors.

WHAT THIS STUDY ADDS

 ⇒ The use of individual participant data 
(IPD), rather than aggregate data, 
can enhance network meta- analysis 
projects by increasing the quality and 
scope of information available; by 
allowing participant characteristics 
to be compared across studies; 
by standardising and improving 
statistical analyses; and by inclusion 
of prognostic factors and treatment 
effect modifiers to reduce concerns of 
inconsistency and heterogeneity.

HOW THIS STUDY MIGHT AFFECT 
RESEARCH, PRACTICE OR POLICY

 ⇒ The use of IPD in network meta- 
analysis projects can produce more 
precise, reliable and informative 
results for patients and clinical 
decision makers. We recommend 
network meta- analysis projects 
consider using IPD where possible.
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What is an NMA?
A pairwise meta- analysis compares two treatments (eg, A and B) 
by combining the evidence only from trials that directly compared 
those treatments. However, different trials often evaluate different 
sets of treatments (eg, some compare A and B, others compare A 
and C or B and C), and then the pairwise meta- analysis approach 
is unable to provide a coherent comparison of all treatments. 
Moreover, for some pairs of treatments there may be no studies 
comparing them directly at all.

To address this, NMA provides a comprehensive framework 
to coherently compare and rank all available treatments for a 
specific disease. It does so by synthesising data from all trials in a 
single analysis, using both direct evidence (eg, about A vs B from 
trials that compared A to B head- to- head) and indirect evidence 
(eg, about A vs B from trials that compared A to C and trials that 
compared B to C).4–6 The premise is as follows. For a randomised 
trial in a particular population of patients, the following relation-
ship holds exactly

Treatment contrast of A vs B
= (treatment contrast of A vs C) – (treatment contrast of B vs C)
where ‘treatment contrast’ is the true relative effect between 

two treatments, measured on a scale such as a log risk ratio, 
log OR, log HR or mean difference. In an NMA, we assume that 
this relationship also holds (on average) across the populations 
of patients in different trials. This notion is often referred to as 
the consistency assumption (or coherence),7 and it allows us to 

combine direct and indirect evidence from trials comparing 
different sets of treatments.

The validity of combining studies in a pairwise meta- analysis 
relies on the assumption that relative treatment effects are 
exchangeable between trials.8 This is appropriate when trials are 
sufficiently similar with respect to all study- level and patient- level 
characteristics that might impact on the relative effect of the treat-
ments being compared (eg, quality, length of follow- up, casemix). 
Exchangeability also underpins the validity of combining direct 
and indirect evidence in a network meta- analysis (and thus the 
statistical consistency, ie, the agreement between direct and indi-
rect evidence), and it implies that the relative effects between any 
pair of treatments observed directly in some trials would be the 
same in other trials where they are unobserved. This concept is 
also known as transitivity,9 10and when transitivity does not hold, 
there is likely to be inconsistency (incoherence) in the NMA such 
that the direct and indirect evidence disagree.

Between- study heterogeneity in treatment effects is another 
important concept in NMA, which refers to genuine differences in 
the true treatment effects (eg, for A vs B) across trials, and is caused 
by differences in treatment effect modifiers across trials making 
the same comparison(s) (eg, trials of A vs B). Effect modifiers are 
methodological or clinical characteristics of trials that influence 
the magnitude of relative treatment effects on a given scale, and 
examples include duration of follow- up, outcome definitions, 
trial quality (risk of bias) and participant- level characteristics.11–14 

Figure 1 Distribution of age as derived directly from the IPD for each of 17 sites (‘studies’) included in the IPD NMA of Donegan et al.51 The distribution 
is similar in most studies, though slightly more skewed in some studies (eg, Mbarara, Tororo), which may lead to heterogeneity or inconsistency in the 
network due to age. Figure originally presented in online supplemental material of Donegan et al.51 CD+A, chlorproguanil- dapsone plus artesunate; IPD, 
individual participant data; NMA, network meta- analysis.
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Inconsistency is also a consequence of treatment effect modifiers, 
but specifically when there are systematic imbalances in effect 
modifiers across trials making different comparisons. Thus, an 
effect modifier might differ across the trials in a network (eg, some 
trials were performed in younger patients, some in older patients, 
and age impacts on relative treatment effects); this might cause 
heterogeneity. However, if there are systematic differences in age 
across comparisons (eg, all A vs B studies are in younger patients 
and all A vs C studies are in older patients), this might cause 
inconsistency.

Potential benefits of using IPD for NMA
Compared with using AD from existing trials, the availability of 
IPD brings important advantages for NMA projects, and five key 
benefits are now described.3

Benefit 1: improving the quality and scope of information available
A key benefit of IPD over AD is the potential to improve the 
quantity, completeness, and validity of data available for each 
trial, because there is no need to be limited by the study- level 
information (ie, AD) that has been published for each trial. This 
enhances data quality,15–18 provides independent scrutiny of the 
trial data and enables more information to be available for the 
NMA. This may lead to more reliable and informative conclusions, 
with potentially reduced heterogeneity and inconsistency.

For instance, there is greater ability to standardise outcome and 
covariate definitions across trials, and to include outcomes that 
were not reported in the original publications, or participants who 
were inappropriately excluded from the original trial analyses.15–17 
This can help reduce potential trial reporting biases19 and increase 
the quantity of information available for the NMA, boosting the 
statistical power to compare treatments.20 For example, studies of 
depression often report the outcome ‘response to treatment’, with 
the definition varying across different studies.21 One study might 
define response as 20% reduction in baseline severity and another 
study might use a 50% reduction, while a third study might define 
response as a different endpoint severity being below another 
arbitrary threshold (on some scale). When using AD we are limited 
to using these highly variable definitions of response, which may 
lead to large heterogeneity and greater scope for inconsistency. 
If IPD are available, we can better harmonise the definition of 
response and the severity score can be analysed on its contin-
uous scale, thus avoiding dichotomisation and allowing a more 
powerful investigation of the outcome as originally measured. For 
example, in their IPD NMA, Karyotaki et al used IPD to convert 
depression scores to the same Patient Health Questionnaire- 9 
(PHQ- 9) scale,22 and subsequently chose to analyse PHQ- 9 on its 
continuous scale rather than dichotomising into high- score and 
low- score groups.

Most IPD NMA projects are collaborative endeavours, involving 
direct contact with trial investigators, which can help to iden-
tify trials not easily identifiable via other forms of searching,15–17 
and to clarify the eligibility of potentially relevant trials. Trial 
investigators can also provide extra information leading to more 
reliable risk of bias assessments than what is achievable from 
trial reports,23 and if potential biases or errors are identified, they 
may be able to supply additional data to resolve or minimise 
these.15–17 IPD also allow more flexible and detailed modelling of 
the survival function,24–26 potentially including longer follow- up 
times (or even larger numbers of participants), for example, for 
those trials that continued monitoring (or recruiting) participants 
beyond the timepoint when the original analyses were conducted.

Benefit 2: examining and plotting distributions of covariates 
across trials
Before undertaking an NMA, it is important to select only those 
trials relevant to the population of clinical interest and to then 
identify any systematic differences in variables that might affect 
measures of relative treatment effect. Of particular interest are 
suspected effect modifiers or, specifically when analysing ORs or 
HRs, prognostic factors that modify baseline risk, as these may 
lead to heterogeneity or inconsistency in the NMA if their distri-
bution is different across trials (see also benefits 4 and 5).

When using only AD, statistical summaries of the distribu-
tions of participant- level characteristics need to be extracted from 
the trial publications (or obtained from the trial investigators). 
Such AD may be the mean and SD for a continuous covariate, 
or the proportion of participants in each category for a cate-
gorical covariate. In contrast, when IPD are available for each 
trial, researchers can summarise and plot covariate distributions 

Box 1 Example of how heterogeneity and 
inconsistency can arise in an NMA when the 
distribution of prognostic factors differs across 
trials

Consider a hypothetical example where, regardless of 
the trial, the underlying (true) probability (P) of having 
an adverse outcome depends on whether treatment B 
or A is used and, in particular, whether a participant 
smokes, as defined by the equation,

 logit
(
p
)
= −0.5 +

(
4× smoker

)
−

(
0.5× B

)
 

where B = 1 if in treatment group B and B = 0 if 
treatment group A, and smoker = 1 if a participant 
currently smokes and 0 otherwise. Hence, after 
adjusting for the strong prognostic effect of smoking, 
the true treatment effect for B vs A is an OR of 
exp(−0.5)=0.61. Note that there are no treatment 
effect modifiers (eg, no treatment- smoker interaction).

Now consider that two randomised trials of B vs A 
were conducted: trial 1 used a population where 20% 
of participants smoked, and trial 2 had a population 
where 80% of participants smoked. Regardless of the 
proportion of smokers, the equation tells us that both 
trials have a true OR of 0.61 for the treatment effect 
adjusted for the prognostic effect of smoking.

However, when ignoring smoking, the unadjusted 
treatment effect is considerably different in the two 
trials. The true unadjusted OR for B vs A is 0.69 for 
trial 1 and 0.77 for trial 2. Hence, there is genuine 
between- trial heterogeneity in the unadjusted OR for 
trials 1 and 2 (as available in a typical AD NMA), but 
no heterogeneity in the OR adjusted for smoking (as 
available from an IPD NMA).

Similarly, if the distribution of smokers is different 
in each subset of trials that provide direct and indirect 
evidence for a particular comparison, then the 
unadjusted ORs will differ for each subset, leading 
to inconsistency in the NMA for that comparison. 
However, with IPD such inconsistency can be removed 
by synthesising ORs adjusted for smoking for each 
trial.

AD, aggregate data; IPD, individual participant data; 
NMA, network meta- analysis.
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themselves,27 28 and may have access to a broader set of recorded 
covariates than summarised in the original trial publication. An 
example is provided in figure 1. This allows better comparison of 
how covariate distributions differ across comparisons and across 
trials to help assess their potential to cause heterogeneity and 
inconsistency in the network.29 For example, to assess the plausi-
bility of the consistency assumption in their IPD NMA, Karyotaki 
et al ‘checked the distribution of possible effect size modifiers 
in the studies grouped by comparison’ and did not identify any 
systematic differences across comparisons.

Benefit 3: standardising and improving the analysis of each trial
With IPD, effect measures can be standardised across trials, and 
this allows NMA researchers to define their own estimands of 
interest, rather than being limited to those presented in the orig-
inal trial publications. For example, many published trials report 
ORs, but with IPD the NMA researcher may rather be able to esti-
mate HRs in order to account for censoring and time- to- event 
information. Similarly, restricted mean survival time differences 
could be used rather than HRs if non- proportional hazards are 
a concern.30 Such decisions can be informed by using the IPD to 
check model assumptions (eg, proportional hazards assumption) 
and model fit,31 after addressing other issues such as outliers, none 
of which are likely to be possible without IPD.

IPD also enable more appropriate or advanced analytical 
approaches, in particular for the modelling of time- to- event 
data32 33; the analysis of continuous variables on their continuous 
scale (rather than dichotomised); the examination of non- linear 
relationships between covariates and the outcome34; the inclu-
sion of prognostic factors and treatment–covariate interactions 
(see benefits 4 and 5); and the handling of missing data, which is 
especially important for trials that originally used suboptimal or 
inappropriate methods to deal with missing values.

IPD also facilitate a multivariate NMA approach, to compare 
treatments across multiple outcomes simultaneously (eg, bene-
fits and harms; systolic and diastolic blood pressure; surrogate 
outcomes like disease- free and overall survival; pain scores at 6 
and 12 months), while accounting for the (participant- level and 
study- level) correlation among outcomes.35 This can lead to more 
precise inferences and even change the ranking of treatments,36 37 
compared with an NMA of each outcome separately. For example, 
in an NMA of 68 trials comparing 13 active antimanic drugs and 
placebo for acute mania,38 two negatively correlated outcomes 
of interest were efficacy (defined as the proportion of partic-
ipants with at least a 50% reduction in manic symptoms from 
baseline to week 3) and acceptability (defined as the proportion 
of participants with treatment discontinuation before 3 weeks). 
When performing a separate NMA for each outcome, carbamaze-
pine ranked as the most effective treatment in terms of response; 
however, when analysing outcomes jointly in a multivariate NMA, 
carbamazepine fell to fourth place.

Benefit 4: adjusting for prognostic factors in the analysis of each 
trial
IPD allow the NMA to compare treatment effects conditional on 
(ie, adjusting for) prognostic factors, which is important.2 First, 
adjustment for prognostic factors in a single trial (eg, using 
regression) is often preferred to increase power to detect treatment 
effects (and, for continuous outcomes, to increase the precision 
of the estimates), as prognostic factors may explain variation 
in outcomes across participants,39–42 and is necessary to obtain 
correct estimates of uncertainty when stratified randomisation 
has been employed43; thus, subsequent NMA results may also be 

more powerful and appropriately quantify uncertainty.44 Second, 
conditional treatment effects also align more closely with the 
drive toward personalised medicine tailoring treatment decisions 
to each patient given their particular characteristics and outcome 
risks. Third, conditioning on observed prognostic factors improves 
the plausibility of the missing at random assumption for partici-
pants with missing outcomes, and so improves on a complete- case 
analysis of unadjusted treatment effect estimates.

Fourth, adjustment for prognostic factors can improve homo-
geneity and consistency of treatment effects in an NMA. Even 
in situations where there are no effect modifiers, differences in 
the distribution of prognostic factors between trials can lead to 
heterogeneity and inconsistency to when the treatment effect is 
measured on the OR or HR scale.3 IPD help to address this by 
adjusting for prognostic factors in the analysis of each trial, 
and an example is provided in box 1. Occasionally a prognostic 
factor may also be an effect modifier,45 which can also be better 
modelled using IPD, as considered in benefit 5.

Benefit 5: including treatment–covariate interactions (effect 
modifiers)
One of the most important advantages of IPD is that it allows 
the examination and inclusion of participant- level effect modi-
fiers (treatment–covariate interactions) that would otherwise 
cause heterogeneity or inconsistency in the NMA. Single trials 
are rarely powered to detect treatment–covariate interactions, 
and typically an AD meta- analysis can only examine across- trial 
relationships, which are prone to aggregation bias and trial- level 
confounding.46 47 In contrast, IPD meta- analysis allows participant- 
level relationships to be modelled directly and more precisely, for 
example in a regression that models a covariate’s interaction with 
treatment effect while adjusting for the covariate’s prognostic 
effect (and potentially also other prognostic factors). This allows 
NMA results to compare treatments for specific patient popula-
tions, subgroups or at covariate values defined by participant- 
level characteristics. Indeed, since the magnitude of treatment 
effects may change in the presence of effect modification, the best 
ranking treatment(s) may differ across populations, subgroups, 
and covariate values defined by effect modifiers.3 13 48–50 In this 
situation, treatment recommendations will need to be tailored to a 
chosen target population, or for subgroups or individual patients, 
according to their corresponding (distribution of) covariate values. 
This type of analysis (adjustment for effect modifiers, followed by 
the production of population- targeted treatment effect estimates) 
is known as ‘population adjustment’.49

Riley et al describe how to include participant- level treat-
ment–covariate interactions in two- stage or one- stage IPD meta- 
analysis models with a single pairwise comparison.2 47 These 
can be extended to NMA situations to accommodate treatment–
covariate interactions corresponding to the multiple treatment 
effects. Ideally, these interactions are assumed to be independent 
(ie, different for each treatment), but to aid model convergence, it 
may be necessary to assume interactions are exchangeable (eg, by 
including random effects) or even common for each treatment.51

Consider an NMA presented by Donegan et al,51 who use IPD 
to examine four artemisinin- based combination therapies for 
uncomplicated malaria: amodiaquine‐artesunate, dihydroarte-
misinin‐piperaquine (DHAPQ), artemether‐lumefantrine (AL), and 
chlorproguanil- dapsone plus artesunate. The binary outcome of 
interest was treatment success at 28 days. IPD were available from 
17 sites, which for simplicity can be considered as 17 ‘trials’ here. 
Age was prespecified as a potential treatment effect modifier, 
since in areas with endemic malaria older patients are more likely 
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to achieve success on treatment because they have greater immu-
nity. There is strong evidence of an interaction between treatment 
effects and age. This leads to larger summary treatment effects at 
higher ages (figure 2). For example, the summary OR for AL versus 
DHAPQ is 0.51 (95% CI 0.26 to 1.06) at 1 year of age, and 0.22 
(95% CI 0.09 to 0.54) at 5 years of age, when assuming interac-
tions are independent for each treatment comparison.

Karyotaki et al22 provide an online calculator for estimating 
and comparing treatment effects conditional on participant- level 
characteristics of baseline PHQ- 9 score, age, gender, relationship 
status and employment status following their IPD NMA. The tool 

is illustrated in figure 3. Such predictions often require shrinkage 
and penalisation techniques,47 52 53 in order to mitigate against 
overfitting (extreme predictions), and Karyotaki et al used the 
least absolute shrinkage and selection operator (LASSO) for this 
purpose.22

Potential challenges
IPD meta- analysis projects also face challenges.2 They are a 
considerable undertaking, often taking upwards of 2 years to 
obtain, check, harmonise and synthesise IPD. Negotiating and 
maintaining collaboration with trial investigators takes consid-
erable effort, and care is needed to arrange and adhere to data- 
sharing agreements, including how IPD are transferred and stored. 
To safeguard against future conflicts, data- sharing agreements 
should make clear that the central IPD NMA research team are 
responsible for making final decisions (eg, about design, IPD 
included, risk of bias judgements, analysis methods), while still 
valuing advice from the trial investigators. An independent advi-
sory group may facilitate this.

Inevitably, the requested IPD may not be available from all 
studies, leading to availability bias concerns,54 and the need for 
methods to combine IPD and AD.48 50 55 Multilevel network meta- 
regression extends the IPD NMA framework to incorporate IPD and 
AD (with full- IPD NMA as a special case),48 and is implemented 
in the multinma R package.56 The approach avoids aggregation 
bias by integrating the individual- level regression model over 
the covariate distributions in each aggregate study population, 
and can produce estimates in any target population of interest. 
Other methods including matching- adjusted indirect comparison, 
simulated treatment comparison and predictive- adjusted indirect 
comparison have also been proposed for ‘population adjustment’ 
with limited IPD, but are limited to a two- study indirect compar-
ison (one IPD and one AD study) and can only produce estimates 
relevant to the population of the AD study.49

Concluding remarks
In summary, the use of IPD adds value to NMA projects by 
improving quality (eg, through improved homogeneity and 
consistency in the network) and scope (eg, additional outcomes 
and longer follow- up), leading to more reliable and tailored NMA 
results for clinical practice. In the coming years, we anticipate 
further methodological research to improve and extend IPD NMA 
projects, and the website www.ipdma.co.uk provides signposts to 
new methodological developments.

Figure 2 Results reported by Donegan et al51 after estimation of an NMA allowing for treatment–age interactions, as applied to compare four 
treatments for malaria using IPD from 11 sites. Figure adapted from Donegan et al,51 and results assume treatment–age interactions are independent 
for each treatment comparison. AQ+AS, amodiaquine‐artesunat; AL, artemether‐lumefantrine; DHAPQ, dihydroartemisinin‐piperaquine; IPD, individual 
participant data; NMA, network meta- analysis.

Figure 3 Example output from an online calculator of treatment effects 
for depression (measured on Patient Health Questionaire- 9 (PHQ- 9) scale) 
conditional on patient- level characteristics, as derived from the IPD NMA 
results of Karyotaki et al.22 The tool is available here: https://esm.ispm.
unibe.ch/shinies/iCBT/). iCBT, internet- based cognitive behavioural 
therapy; IPD, individual participant data; NMA, network meta- analysis; 
TAU, treatment as usual.
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