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Abstract
Network meta-analysis (NMA) is an increasingly 
popular statistical method of synthesising 
evidence to assess the comparative benefits and 
harms of multiple treatments in a single analysis. 
Several automated software packages facilitate 
conducting NMA using either of two alternative 
approaches, Bayesian or frequentist frameworks. 
Researchers must choose a framework for 
conducting NMA (Bayesian or frequentist) and 
select appropriate model(s), and those conducting 
NMA need to understand the assumptions and 
limitations of different approaches. Bayesian 
models are more frequently used and can be 
more flexible but require checking additional 
assumptions and greater statistical expertise that 
are often ignored. The present paper describes 
the important theoretical aspects of Bayesian and 
frequentist models for NMA and the applications 
and considerations of contrast-synthesis and arm-
synthesis NMAs. In addition, we present evidence 
from a limited number of simulation and empirical 
studies that compared different frequentist and 
Bayesian models and provide an overview of 
available automated software packages to perform 
NMA. We will conclude that when analysts choose 
appropriate models, there are seldom important 
differences in the results of Bayesian and 
frequentist approaches and that network meta-
analysts should therefore focus on model features 
rather than the statistical framework.

Introduction
In recent years, evidence synthesis using network 
meta-analysis (NMA) methods has gained popu-
larity,1 becoming an attractive methodology for 
researchers, clinicians and decision-makers across 
the clinical spectrum. A quick search in PubMed 
shows an exponential increase in the number 
of NMA publications in the last few years (see 
figure  1). While conventional pairwise meta-
analysis is limited to providing relative effects 
for two interventions, NMA offers the ability to 
simultaneously estimate the relative benefits and 
harms of multiple interventions or diagnostic 
tests, thus better supporting complex decision-
making processes.2 By combing direct evidence 
with indirect evidence, NMA improves the preci-
sion of relative effect estimates. Further, its results 

can provide guidance on rating treatment options 
and reduce the uncertainty of parameters for cost-
effectiveness models.3 4 The past few years have 
seen important advances in the statistical methods, 
software development and methodologies to facil-
itate interpretation and decision-making.3 5–7

Despite the appealing advantages, NMA pres-
ents challenges. The two key assumptions of NMA, 
transitivity and coherence, rely on the agreement 
of different sources of evidence (direct and indi-
rect evidence for the same treatment comparison 
and their similarity), which may be challenging 
to justify in practice.1 2 8 Despite all advance-
ments that has made it easier to produce NMAs, 
many published systematic reviews with NMA 
are of poor quality.9 Limitations in the practice of 
NMA abound and include inappropriate network 
configuration and node selection,10 11 using prob-
ability ranking to draw conclusions from NMA 
results,12 13 relying on low power statistical tests 
to assess coherence assumption,14 using network 

WHAT IS ALREADY KNOWN ON THIS 
TOPIC

	⇒ Network meta-analysis (NMA) 
has become a popular method to 
combine results from several studies 
comparing multiple treatments or 
interventions.

	⇒ Statistical models to perform NMA 
models have been developed both in 
Bayesian and frequentist frameworks.

WHAT THIS STUDY ADDS

	⇒ We present important theoretical 
aspects of Bayesian and frequentist 
models for NMA, review evidence 
from simulation and empirical studies 
that compared different frequentist 
and Bayesian models, and provide 
an overview of available automated 
software packages to perform NMA.

HOW THIS STUDY MIGHT AFFECT 
RESEARCH, PRACTICE AND/OR POLICY

	⇒ Network meta-analysts should 
focus on model features and their 
applications and assumptions rather 
than the statistical framework.

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://ebm

.bm
j.com

/
B

M
J E

B
M

: first published as 10.1136/bm
jebm

-2022-111928 on 27 June 2022. D
ow

nloaded from
 

http://orcid.org/0000-0001-9422-5232
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjebm-2022-111928&domain=pdf&date_stamp=2023-05-08
http://ebm.bmj.com/


BMJ Evidence-Based Medicine June 2023 | volume 28 | number 3 | 205

Research methods and reporting

meta-regression with a limited number of studies to assess effect 
modification, and failing to assess certainty of evidence for effect 
estimates.12 13

In recent years, while statisticians and methodologists have 
made great attempts to improve understanding of NMA methods, 
there remain methodological topics with limited guidance for 
those conducting NMA. In the present article, we provide a 
comprehensive overview of statistical models for NMA, review 
currently available software packages, and provide guidance for 
model selection to perform NMA.

Fundamentals of statistical models for NMA
NMA models have been developed both in Bayesian and frequen-
tist frameworks. From a broader perspective, the statistical infer-
ence framework differentiates the two approaches.15 In frequentist 
statistics, the parameters that represent the characteristics of the 
population are fixed, but an unknown constant can be inferred 
using the likelihood of the observed data. In other words, the 
probability that the research hypothesis is true within the observed 
data is specified; thus, the frequentist framework can only help 
decide whether to accept or reject a hypothesis based on the statis-
tical significance level—based on estimation.15 16 The results from 
an analysis using the frequentist approach are given as a point 
estimate (eg, OR, relative risk or mean difference) with a 95% CI.

Bayesian statistics have a different perspective on uncertainty 
that mostly involves conditional probability—the probability of an 
event A, given event B. Unlike the frequentist approach that only 
uses the likelihood from the observed data, the Bayesian frame-
work relies on the probability distribution of the model parame-
ters given the observed data and the prior beliefs from external 
information about the values of the parameters. Combining these 
two using Markov Chain Monte Carlo (MCMC) simulations, which 
intends to reproduce the model many times until it stabilises and 
converges, generates a posterior probability.15–17 The results of the 
Bayesian framework are presented as a point estimate with a 95% 
credible interval (CrI), which is interpreted as the interval in which 
there is a 95% probability that the values of the point estimate 
will lie. For ratio measures (eg, OR, relative risk or HR), medians 
are used as point estimate, whereas either the mean or median can 
be reported for the pooled mean difference or standardised mean 
difference.

Frequentist models for NMA
Bucher et al proposed the first frequentist approach for a network 
of three interventions.18 In this approach, which is also known as 
adjusted indirect comparison, an estimate for the indirect treat-
ment effect of A versus B can be obtained through the direct 
comparison of A versus C and B versus C (eg, as the difference in 
log relative effects of the two direct comparisons). The variance 
of the indirect estimate is the sum of the variances of the two 
direct effect estimates. In a closed triangular loop of evidence (or 
evidence cycle) the indirect effect estimate can be combined with 
the direct effect estimate to obtain the network (or mixed) effect 
estimate.

The most popular frequentist NMA models are the graph-
theoretical approach (proposed by Rücker et al19), the meta-
regression approach (proposed by Lumley20 and then further 
developed by Salanti et al21), and multivariate meta-analysis 
model (suggested by White et al.22). The theoretical aspects of 
these models and their advantages and limitations are discussed 
in detail elsewhere.3 23–25

All the above models use estimates obtained at contrast or 
study level - whether NMA is performed under a fixed-effect 
model (assumes there is one true effect size underlying the trials 
for each comparison) or a random-effects model (assumes the 
true effect size can differ from trial to trial). We will go over the 
contrast-based and arm-based models later in the text. In addi-
tion, while theoretically all these models can be modified to use 
between-study heterogeneity variance (tau2) from each compar-
ison—informed by more than one study, their associated automated 
packages (tables 1 and 2) only use the between-study heteroge-
neity (tau2) that is assumed to be equal between and constant 
for all treatment comparisons in the network (ie, a homogenous 
variance assumption). Heterogeneity variance in NMA models is 
discussed further down in the text.

Bayesian models for NMA
All Bayesian models suggested for NMA are hierarchical or multi-
level models (ie, written in multiple levels or hierarchical form 
and that the estimates from submodels are dependent). Smith et 
al26 proposed a hierarchical model for conventional meta-analysis 
that lays the foundation for the popular NMA model of Lu and 
Ades (‘MTC’ model),27 28 which then extended within the gener-
alised linear mixed-modelling framework and was automated to 
create the ‘GeMTC’ model.29 Within this framework, additional 
models were proposed to account for arm-level estimands (quan-
tities of interest)—for example, Dias et al and Hong et al models.30

For meta-analysis and NMA in a Bayesian framework, the 
effects of interventions to be estimated are given prior distribu-
tions. In general, we want the observed data to have the most 
influence on the posterior effect estimates and, thus, often non‐
informative or minimally informative prior distributions (in 
which the posterior distribution is determined as completely or 
as minimally as possible by the observed data) are used.23 31 32 
The prior distribution should be within the range of plausible 
values for the pooled intervention effect and, if the prior is to be 
non‐informative (or vague or uniform), it should be very large, 
which means that the distribution is essentially flat over the 
plausible range of values for the treatment effect.31–33 Despite the 
importance of prior distributions, a recent review of 44 Bayesian 
NMAs published in leading general medical journals found that 
approximately half did not specify their choice of heterogeneity 
prior distributions and 84% failed to provide a rationale for their 
selected priors.33

Figure 1  Number of PubMed indexed network meta-analysis 
publications. PubMed search query: (‘Network Meta-Analysis’ (Mesh)) 
or (‘network meta-analysis’ (title)) or (‘multiple treatment meta-analysis’ 
(Title)) or (‘multiple treatment comparison’ (Title)) or (‘adjusted indirect 
comparison’ (Title)).
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In a random-effects model, a second set of priors is defined 
for the between‐study heterogeneity variance (tau2). The range of 
plausible values for informative and non-informative priors of 
tau2 and their influence on NMA effect estimates are discussed 

elsewhere.32–34 In brief, a typical non‐informative prior for tau2 
for a binary outcome using logit link models ranges from 0 to 2; 
this represents a huge range of trial‐specific treatment effects. For 
example, for a median treatment effect of OR=1.25 (Ln OR=0.22), 

Table 1  Automated software packages for performing frequentist network meta-analysis

Package 
(software) Input data NMA model

Type of 
heterogeneity 
variance Summary effect measure Other features

Netmeta (R) Arm-level
Contrast-level

Graph theory Common Mean difference, 
standardised mean 
difference, OR, risk ratio, 
log hazard ratio (for time-
to-event data)

Generates weighted network map; traditional forest plots 
used for checking the consistency assumption; global 
and comparison-specific incoherence assessment; net 
heat plot to evaluate the inconsistency; league table 
(comparative effects estimates); probability rankings 
(visualised with rankogram), SUCRA values, P-scores (can 
be seen as the frequentist equivalent of SUCRA values)

Network suite 
(Stata)

Arm-level
Contrast-level

Multivariate meta-
analysis

Common Mean difference, 
standardised mean 
difference, OR, risk ratio, 
log hazard ratio (for 
time-to-event data), risk 
difference

Advanced options to develop network map; forest 
plots to compare the results of consistency and 
inconsistency models; global, comparison-specific, 
and loop-specific (only first and second order loops) 
incoherence assessment; league table (comparative 
effects estimates); probability rankings (visualised with 
rankogram) and SUCRA values; ranking of treatments 
using multidimensional scaling; univariable and 
multivariable network meta-regression; handling of 
different missing data scenarios) (metamiss2)

SUCRA, surface under the cumulative ranking curve.

Table 2  Automated software packages for performing Bayesian network meta-analysis

Package (software) Input data NMA model
Type of heterogeneity 
variance Summary effect measure Other features

GeMTC
(R)

Arm-level
Contrast-level

Generalised linear 
models

Common Mean difference, standardised 
mean difference, OR, risk ratio, 
log hazard ratio (for time-to-
event data)

Relies on JAGS or OpenBUGS to develop 
a hierarchical generalised linear model; 
generates uniform network map; global and 
comparison-specific incoherence assessment; 
league table (comparative effects estimates); 
probability rankings (visualised with 
rankogram) and SUCRA values; network meta-
regression

BUGSnet
(R)

Arm-level
Contrast-level

Generalised linear 
models

Common Mean difference, standardised 
mean difference, OR, risk ratio

Relies on JAGS to develop a hierarchical 
generalised linear model; advanced options to 
develop network map; global and comparison-
specific incoherence assessment; league table 
(comparative effects estimates); probability 
rankings (visualised with rankogram) and 
SUCRA values; network meta-regression

bnma
(R)

Arm-level
Contrast-level

Generalised linear 
models

Common Mean difference, standardised 
mean difference, OR, risk ratio, 
log hazard ratio (for time-to-
event data)

Relies on JAGS to conduct MCMC simulations; 
generates uniform network map; network.
inconsistency.plot function for visual to 
compare the difference between consistency 
and inconsistency models; global and 
comparison-specific incoherence assessment; 
probability rankings (visualised with 
rankogram) and SUCRA values

pcnetmeta
(R)

Arm-level Multivariate 
methods

Common
Comparison-specific

Mean difference, standardised 
mean difference, OR, risk ratio, 
log hazard ratio (for time-to-
event data), risk difference

Relies on JAGS to conduct MCMC simulations; 
limited advanced options to develop network 
map; handling of different missing data 
scenarios); incapable of assessing global 
or comparison-specific incoherence, or 
incorporating an inconsistency model, or using 
meta-regression to explore incoherence; can 
generate a plot of treatment rank probabilities 
but cannot estimate SUCRA values

Multinma
(R)

Aggregate and 
individual patient data 
at arm-level and/or 
contrast-level

Multilevel network 
meta-regression

Common Allows integrating continuous 
and binary outcomes or Poisson 
outcome count as mean 
difference, OR, risk ratio, HR (for 
time-to-event data)

Models are estimated in a Bayesian framework 
using ‘Stan’; extends the NMA framework 
to synthesise mixtures of individual patient 
and aggregate data; limited options to 
develop network map; population-adjusted 
treatment effects can be produced for any 
study population in the network; capable 
of producing relative effects, rankings, and 
absolute predictions. Capable of checking 
inconsistency using unrelated mean effects 
(UME) model.

JAGS, Just Another Gibbs Sampler; MCMC, Markov Chain Monte Carlo; NMA, network meta-analysis; SUCRA, surface under the cumulative ranking curve.
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we would expect 95% of trials to have a true ORs between 0.17 
and 9.24 (calculated as exp[0.22±2]). It is important to ensure the 
posterior distribution of tau2 is sufficiently different from the prior 
distribution, otherwise the prior distribution will dominate the data 
and no posterior updating will occur. An alternative, but outdated, 
approach would be to use a vague gamma prior distribution for 
the effect estimate to ensure lower prior weights for large values 
of tau2. The limitation of this approach is that it becomes unrea-
sonably informative when low values of tau2 are possible or if the 
evidence is described by a sparse network. A network of treat-
ments that is informed by small number of trials (most compar-
isons informed by 1-2 trials) are typically called sparse network. 
A star-shape network does not have any closed-loop of evidence 
and typically consists of treatments that are mostly compared to 
the reference treatment (e.g., placebo or usual care)" is a footnote 
sentence, a description for explaining "sparse network" term. If 
it can not be added as a footnote, please remove pranthesis from 
the beginning and the end. Similar to the frequentist model, the 
between‐study heterogeneity variance is assumed to be zero in a 
fixed-effect model.

Contrast-synthesis and arm-synthesis NMAs
NMA can be performed using contrast-based or arm-based models. 
Currently, arm-based models are only available using a Bayesian 
framework.25 30 34 While contrast-based NMAs focus on modelling 
relative treatment effects (eg, log of the OR), arm-based models 
use absolute treatment effects from trial arms (eg, the log odds 
of success).25 30 Arm-based models have been criticised for their 
departure from standard meta-analysis practice by compromising 
randomisation in evidence, and that absolute effects tend to be 
highly variable compared to relative effects.25 30 35 The advantages 
of arm-based models are intriguing: they allow entry of arm-level 
covariates/effect modifiers into the model, data from single-arm 
studies can be included—this is helpful in cost-effectiveness anal-
ysis and decision-making models to have better performance in 
handling missingness, which is helpful in estimating comparative 
absolute effects.25 35–37 Arm-based models can also accommodate 
different heterogeneity variances as opposed to using a common-
heterogeneity variance.30

Heterogeneity variance in NMA models
All automated packages, with the exception of pcnetmeta which 
is used to perform arm-based NMA, assume a common heteroge-
neity variance for all treatments effects under the random-effects 
assumption. This means for all available direct comparisons 
in the network a single between-study heterogeneity (tau2) is 
assumed.23 27 32 While theoretically both frequentist and Bayesian 
models are capable of estimating tau for each comparison informed 
by at least two studies, in practice it is challenging and mathe-
matically complex.27 Using a constant and common heterogeneity 
variance reduces the number of model parameters, simplifies the 
estimation and increases the precision of heterogeneity variance 
and as a result effect estimates from the NMA. Indeed, in order to 
simplify the NMA model, it is sometimes the preferred approach 
for performing arm-based synthesis.25 38

In sparse networks and star-shaped networks informed by 
small number of studies, heterogeneity estimation across the 
network can have implausible results and using a common hetero-
geneity variance can lead to unexpected imprecision of network 
estimates (ie, the CI of the network estimate becomes wider than 
that of the direct or the indirect estimates).39 40 When the choice 
of priors for the heterogeneity variance is too wide, this can be 
more pronounced in Bayesian models than frequentist models.40 

In such instances, using a fixed-effect model (tau=zero) can 
resolve the problem.39 Arm-based models also can be used, but 
the estimates using the arm-based models may not converge well 
if some comparisons are only informed by a few (say, less than 
three) studies.30

Currently available software packages for NMA
GeMTC,41 42 BUGSnet43 and bnma44 are available R packages 
for performing Bayesian contrast-based NMA using a common 
heterogeneity variance. In addition, pcnetmeta package allows 
performing Bayesian arm-based NMA in R. Neupane et al 
provided a comprehensive review of three R packages— GeMTC, 
pcnetmeta and netmeta—for NMA.45 Multinma is an additional 
automated package available in R for performing Bayesian NMA 
of individual patient and aggregate data using multilevel network 
meta-regression.46 47 R package netmeta19 and the Stata network 
suite48 49 are the available automated packages to perform frequen-
tist contrast-based NMA. Further details about these packages are 
summarised in tables 1 and 2.

Empirical and simulation studies comparing Bayesian and 
frequentist models
Although a considerable amount of methodological research in 
NMA has been published recently, only a limited number of simu-
lation and empirical studies have compared the existing meth-
odological advances. Unlike other areas of biomedical research, 
methods are commonly evaluated on an empirical example, 
resulting in the notion of differences between candidate models 
rather than an evaluation against known theoretical values.

We conducted a scoping search of PubMed and Scopus to 
identify empirical and simulation studies comparing frequentist 
and Bayesian NMA models and found one study protocol,38 two 
conference presentations50 51 and four peer-reviewed publica-
tions.24 25 52 53 The protocol describes an empirical study of three 
contrast-synthesis methods and two arm-synthesis methods.38 
Their group has published a simulation study comparing contrast-
based model of Lu and Ades,28 the arm-based model of Hong et 
al54 and two intermediate contrast-based models with different 
study intercepts and applied these models to a real dataset.25 They 
concluded that all these models can provide valid results and 
that the results of these models are comparable. The important 
difference between their selected models were not that they were 
arm-based or contrast-based but in other model features (ie, fixed 
vs random study intercepts, estimands, whether treatment effects 
relate to study intercepts and missing data assumptions).

Seide et al performed a simulation study for sparse networks 
of trials using two frequentist models (graph-theoretical approach 
and multivariate meta-analysis model) and the GeMTC hierar-
chical Bayesian model.24 All models were contrast-based and 
used a common-heterogeneity variance. They concluded that all 
models performed well with respect to coverage, precision, bias 
and error, with minimal difference in estimated ranking proba-
bilities. The important factor in the observed differences was the 
heterogeneity; for example, the credible intervals were wider 
compared with CIs when flatter priors were used for between-
trial heterogeneity or bias, even though minimally, increased with 
heterogeneity. Kiefer et al53 also performed a simulation study of 
networks with up to five interventions comparing the frequen-
tist graph-theoretical approach (netmeta) with two Bayesian MTC 
hierarchical models, assuming a common heterogeneity variance 
(all random-effects contrast-based models). They concluded that 
Bayesian and frequentist consistency models perform similarly 
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and that with moderate or no incoherence and very low heteroge-
neity the latter had slightly better properties.

By re-analysing data from 14 published networks, Sadeghirad 
et al compared fixed and random-effects models from the GeMTC 
hierarchical Bayesian model with non-informative priors to a 
multivariate meta-analysis (network suite) frequentist model.51 
They found no disagreement between network estimates from 
the two framework models. In a conference poster presentation, 
Harvey et al50 compared Bayesian and frequentist approaches 
using a single real dataset but did not provide any details of NMA 
models or any of their findings in the abstract. Hong et al52 used 
Proc GLIMMIX in SAS to perform frequentist NMA and WinBUGS 
for Bayesian NMA (both random-effects contrast-based models) 
using a single real data set and concluded that Bayesian methods 
are more flexible and their results more clinically interpretable.

Conclusion
Some may argue that the Bayesian framework is more flexible 
than frequentist in accommodating alternative NMA models and 
construction of complicated models (eg, arm-based models, anal-
ysis of disconnected networks or longitudinal trial data, or using 
non-common heterogeneity variance) with less assumptions. 
Most of these advantages are unavailable in automated soft-
ware packages and, because of their complexity, require greater 
statistical expertise and proficiency in Bayesian software (eg, 
WinBUGS, OpenBUGS, JAGS). Using automated software pack-
ages within Bayesian framework also has challenges that frequen-
tist approaches avoid, including selection of appropriate prior 
distributions for treatment effects and between-study heteroge-
neity variance, and convergence of models derived from MCMC 
simulations.

Despite these potential challenges, Bayesian models have 
been used more frequently, perhaps because of the availability 
of free software packages and codes and previous shortcomings 
and complications of fitting frequentist NMA models. A limited 
number of simulation and empirical studies suggest no important 
difference in the performance, bias or errors between the frequen-
tist and the Bayesian models, and highlight the importance of 
appropriate model selection. Theoretical aspects of different NMA 
models also support the idea that when appropriate NMA model 
is selected, it is unlikely to assume the results of Bayesian and 
frequentist NMA models would be different. Thus, network meta-
analysts should focus on model features and their applications 
and assumptions rather than the statistical framework.
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