Cisapride was effective in the short term for constipation in children


QUESTION: In children with constipation, what is the effectiveness of cisapride (a prokinetic agent)?

Design
12 week randomised (allocation concealed†), blinded (clinicians, patients, outcome assessors, and statisticians)‡,§ placebo controlled trial.

Setting
Gastroenterology clinic of a hospital in Mexico City, Mexico.

Patients
40 children who were 2–16 years of age, had a history of chronic constipation, and had <3 bowel movements per week during a 2 week observation period before enrolment. Exclusion criteria were Hirschsprung disease, other congenital abnormalities of the gastrointestinal tract, or pelvic floor dyssynergia. Data were available for 36 patients (90%) (mean age 6 y, 67% boys).

Intervention
Patients were disimpacted and allocated to cisapride (n = 17) or placebo (n = 19) for 12 weeks. The medications were given as an oral suspension, 0.2 mg/kg of body weight per dose, 3 times daily; the dose was increased to 0.3 mg/kg if no response was seen at 8 days. Patients were asked to sit on the toilet for 5 minutes/day. Patients were to take Senokot if no bowel movement occurred after 48 hours of treatment; a daily enema was added to the treatment regimen if Senokot was unsuccessful.

Main outcome measure
Clinical response (>3 spontaneous bowel movements (SBMs)/wk with no fecal soiling and no use of other laxatives for >2 wk).

Main results
At 12 weeks, more patients who received cisapride met clinical response criteria than patients who received placebo (p < 0.03) (table). Patients who received cisapride had an increase from baseline in number of SBMs/week (from 0.9 to 4.1, p < 0.05), fewer fecal soiling episodes/day (from 1.8 to 0.08, p < 0.05), and fewer doses of laxatives/week (from 0.9 to 4.1, p < 0.05). Placebo group patients had a decrease in fecal soiling episodes/day (from 1.3 to 0.4, p < 0.05) and doses of laxatives (from 11.5 to 2.1, p < 0.05) but no increase in the number of SBMs/week. Mean time to response was 9.1 weeks in the cisapride group compared with 11 weeks in the placebo group (p < 0.04).

Conclusion
In children with constipation, cisapride increased the number of spontaneous bowel movements and reduced fecal soiling and the use of laxatives.

†See glossary.
‡Information provided by author.
§Hospital ethics committee approval was obtained.

COMMENTARY
Constipation is a common childhood problem, accounting for about 2% of referrals to general pediatric clinics and 2% of those referrals to gastroenterology clinics. Treatment may include dietary fibre, stool softeners, stimulant laxatives, suppositories, enemas, and psychosocial interventions. Initial treatment is directed toward emptying the large bowel and then maintaining regular bowel movements. The ultimate aim is withdrawal of drug treatment without subsequent relapse of constipation. Despite such interventions, some children are refractory to treatment. The prokinetic agent cisapride is known to have an effect on colonic motility and to reduce transit time in the bowel. However, evidence of benefit in constipation has been conflicting.

In the study by Nurko et al, patients had a mean age of 6 years and a mean duration of constipation of about 4 years. Details of previous treatments were not provided, but all patients had been advised by a dietitian about optimal dietary fibre intake before enrolment in the study. Children with identifiable causes of constipation were excluded, as were those found to have outlet obstruction on anorectal manometry. Cisapride was effective, although patients with fecal soiling were less likely to respond. Patients with a higher number of baseline bowel movements were more likely to respond.

Cisapride has been implicated in causing cardiac arrhythmias and has important drug interactions, and its manufacturer has stopped marketing it in the US and the UK. Whether it will successfully resolve constipation in the long term has yet to be investigated. Clinicians will need to take these additional considerations into account when making decisions about managing children with chronic constipation.

John W Puntis, BM, DM
University of Leeds
Leeds, UK


Source of funding:
In part, Janssen Pharmaceutica.

For correspondence:
Dr S Nurko, Pediatric Gastroenterology, Children’s Hospital, 300 Longwood Avenue, Boston, MA 02115, USA.