Dietary fibre supplementation with psyllium or gum arabic reduced faecal incontinence in community-living adults


QUESTION: In community-living adults with incontinence of loose or liquid stools, does dietary fibre supplementation with psyllium or gum arabic reduce faecal incontinence?

Design
Randomised [allocation concealed]*†, blinded [clinicians, participants, and statisticians]+,* placebo controlled trial with 8 day post-intervention comparison.

Setting
Colorectal surgical practice and community in Minneapolis, Minnesota, USA.

Participants
42 adults (mean age 61 y) with at least weekly faecal incontinence of loose or liquid stools. Exclusion criteria were rectal prolapse, colon cancer, rectal fistula, ulcerative colitis, or removal of some portion of the gastrointestinal tract. No participant had biofeedback training for pelvic muscle exercises. Follow up was 93%.

Intervention
Participants were allocated to receive 31 days of dietary fibre supplementation with psyllium 7.1 g/day (n=13); gum arabic 25 g/day (n=13); or placebo given as pectin 0.25 g/day (n=13). Supplements were mixed into fruit juice and divided into 2 servings for consumption during the morning and evening meals. Participants were instructed to maintain their usual diet. Those who were taking antidiarrheal medication were advised not to alter the type and amount during the study.

Main outcome measures
Daily self reported stool characteristics, including rate of incontinent stools, stool consistency, stool frequency, and stool weight.

Main results
The rates of incontinent stools for the psyllium and gum arabic groups were lower than for the placebo group (table). The psyllium and gum arabic groups had lower rates of loose and unformed or liquid stools than did those in the placebo group ($\chi^2(6)=20.8, p=0.002$). No difference existed between the 3 groups for stool frequency, wet weight of stool, or weight of total stool solids.

Conclusion
In adults living in the community, dietary fibre supplementation with psyllium or gum arabic reduced the rate of incontinent stools and improved stool consistency.

Psyllium, gum arabic, and placebo for faecal incontinence at 8 days

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Psyllium</th>
<th>Gum arabic</th>
<th>Placebo</th>
<th>p Value (psyllium + gum arabic vs placebo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of incontinent stools</td>
<td>17%</td>
<td>18%</td>
<td>50%</td>
<td>0.002</td>
</tr>
</tbody>
</table>

*See glossary.
†Information provided by author.

COMMENTARY
Faecal incontinence is a socially disabling and aesthetically displeasing condition that negatively affects patients’ dignity, self confidence, and independence. Diseases of the rectosigmoid colon, such as dysfunction of the pelvic musculature, caused by aging or neurogenic processes, are usual causes of this problem. In the absence of neurological and mobility impairment, continence is a fine balance between faecal consistency, anorectal sensation, and sphincteric function. Recently, rectal compliance and rectoanal sensation have been shown to be important in the pathophysiology of faecal incontinence. Although treatment of the specific disorders may improve outcomes, it is generally unsatisfactory. A paucity of data exists from randomised controlled trials of treatments, including dietary fibre, for faecal incontinence.

In this trial by Bliss et al, the cause of incontinence in the 39 patients who completed evaluation and treatment was not stated. Furthermore, the doses of psyllium and gum arabic were progressively increased during the first 6 days of administration to decrease the risk for flatus and faecal incontinence, but the final doses are not known. Nevertheless, the results show that about 7.1 g of psyllium and 25 g of gum arabic given in 2 daily doses reduced loose and unformed stools and improved incontinence more than did placebo during the 4 weeks of treatment. Although stool frequency and wet weight of stool did not differ for the 3 groups before and after treatment, patients who received psyllium had the highest total water-holding capacity. An inverse relation between total water-holding capacity and the percentage of incontinent stools was observed. Compositional analysis of the stool showed that the total amount of fibre; the constituents of stool fibre, such as neutral sugars, uronic acids, and lignin; and the daily excretion of total short chain fatty acids did not differ among the 3 groups before and after treatment. Thus, the mechanism by which psyllium and gum arabic improved faecal incontinence was not evident in this study, although the increased water-holding capacity may have played a part.

The results of this small, well-designed, randomised trial show that faecal incontinence can be effectively treated by simply adding psyllium or gum arabic to the diet. What is not known is the mechanism of action and whether the effects are long lasting. However, the findings in the study by Bliss et al will probably have a positive effect on patients with faecal incontinence.

Jacob Korula, MD
University of Southern California Keck School of Medicine
Los Angeles, California, USA