Using Bayes’ nomogram to help interpret odds ratios

Introduction
In certain scenarios, the odds ratio (OR) provides an unbiased estimate of the rate ratio in case control studies. However, the OR is also frequently used to estimate the risk ratio (relative risk) (RR) of an outcome in the presence of a risk factor. The degree of error in this estimate is frequently small, but can sometimes be substantial. The OR as an estimate of the RR always overestimates the effect of the exposure (results in an estimate further away from 1). The degree of divergence between the OR and the RR depends on the size of the OR and the probability of the outcome of interest (table). Given the value of the baseline risk and the estimate of the OR, the RR can be estimated by the use of a formula. However, the formula may be inconvenient and cumbersome for readers and users of epidemiological information. A nomogram is a graphical calculator that is a useful and convenient way to perform common calculations without the need to remember formulae. The use of the Bayes’ nomogram has simplified the use of diagnostic test information and is now frequently used by physicians who may be unaware of the formula involved in the conversion. In this editorial, we show that the Bayes’ nomogram, typically associated with likelihood ratios, can also be used to calculate the RR given the OR and the baseline risk.

Method
Our method uses 2 steps to convert from OR to RR, given a baseline risk. The first step uses Bayes’ nomogram (figure). Using a straight edge on the nomogram, line up the baseline probability of an event on axis A, with the OR on axis B, and read off the postexposure probability on axis C. The postexposure probability divided by the baseline probability then yields the RR. Thus, with available information on the OR from epidemiological studies and the baseline risk, Bayes’ nomogram calculates the postexposure risk in the presence of the risk factor. Knowledge of the postexposure risk also allows easy and accurate calculation of the absolute risk difference and the number needed to treat (NNT) or the number needed to harm (NNH).

We present 2 examples to show the use of Bayes’ nomogram to calculate postexposure probability, RR, absolute risk difference, and NNH.

Example 1
We are interested in estimating the risk for precipitating heart failure in an older man who has started taking nonsteroidal anti-inflammatory drugs (NSAIDs) for arthritis. Our search reveals a recent case control study suggesting an OR of 10.5 for developing heart failure associated with the use of NSAIDs by patients with a history of heart disease. To apply this information, we need to estimate our patient’s baseline risk of heart failure. To do this, we use the equations derived by Kannel et al based on the Framingham database. Using the example...
given in that article of the 60 year old man with documented coronary disease who had a vital capacity of 2.5 l, systolic blood pressure of 160 mm Hg, heart rate of 85 beats/min, and evidence of left ventricular hypertrophy on electrocardiogram and cardiomegaly on chest radiogram, this patient’s 4 year risk of heart failure is 34%. His 1 year risk is thus approximately 8.5%. Using Bayes’ nomogram (figure), we anchor a straight edge at 0.085 (baseline risk) on axis A and direct it through axis B at 10.5 (OR). The postexposure risk can be read off axis C as 0.49, or a 49% chance of developing heart failure over 1 year after starting NSAIDs. The RR is then estimated by dividing the post-test probability, 49%, by the pretest probability, 8.5%, to get the RR of 5.8 (not an RR of 10.5 as some would misinterpret the OR). The absolute risk difference is 0.49 (0.47 to 0.52 on axis C), which is the probability of rebleeding with ligation (postexposure risk). To determine the RR associated with ligation compared with sclerotherapy, we divide 0.32 by 0.085 — the positive likelihood ratio divided by the negative likelihood ratio gives the odds ratio of 0.47 (baseline risk) on axis A and 0.52 on axis B (OR), we read 0.32 on axis C, which is the probability of rebleeding with ligation (postexposure risk). To determine the RR associated with ligation compared with sclerotherapy, we divide 0.32 by 0.47, giving an answer of 0.68. This means that the RR is 0.68 and the RRR is 32% (1 – 0.68), not the 48% we would erroneously get if we equated the OR and RR without regard for the baseline risk and magnitude of the OR.

Discussion

ORs are frequently interpreted as RRs. Although the 2 are often very close, if the baseline risk is > 10–20% and the magnitude of the OR is far from 1, the divergence can be substantial. In these cases, we have shown how a Bayes’ nomogram can be used to conveniently calculate more accurate estimates of the RRs. Please note, however, that since the nomogram axes are on the logarithmic scale, interpolation requires some care. Numbers greater than a given mark on the scale will be further away than would be predicted by using a linear scale. Given the fact that the likelihood ratio is a form of OR, and indeed that the positive likelihood ratio divided by the negative likelihood ratio gives the OR, it is not surprising that the nomogram should be suitable for this purpose. However, in our experience with teaching evidence-based medicine, it is an application of Bayes’ nomogram that is not commonly known or used.

JOHN PAGE, MBBS, MSC
Harvard University School of Public Health
Boston, Massachusetts, USA

JOHN ATTIA, MD, PHD, FRCPC
University of Newcastle
Newcastle, New South Wales, Australia

10 Bjerre LM, Le Lorier J. Expressing the magnitude of adverse effects in case-control studies: “the number of patients needed to be treated for one additional patient to be harmed.” BMJ 2000;320:563–4.
BECOME A SENTINEL READER

The Health Information Research Unit at McMaster University, which prepares *Evidence-Based Medicine*, is recruiting frontline clinicians to help define the best research to support evidence-based clinical care and develop a “next generation” information service, exactly tailored to the interests of practicing doctors.

Our objective is to help physicians keep up to date with information that is truly relevant to the care of their own patients. **If you are an MD who has completed formal training and are in clinical practice at least part-time in internal medicine or its subspecialties or general practice/family medicine, then you qualify to participate.**

As a Sentinel Reader:
- We’ll send you hot-off-the-press articles that apply to your discipline(s), identified by a hand-search of over 100 journals, and that have been checked for scientific merit.
- You will rate the article on two scales, one for newsworthiness and another for relevance.
- The most pertinent articles will be abstracted in *ACP Journal Club* and *Evidence-Based Medicine* and eventually incorporated into a new online service.

For your contribution:
- **Earn CME credits** (North America) – you will earn 1 CME credit for every 4 articles read and rated in our system (based on usual reading times to date).
- **Stellar Articles** – we will show you articles that you and your colleagues rated as 6 or more, on a scale of 7, in your discipline(s).
- **We’ll collate your ratings with at least two other colleagues in your discipline and use your ratings to build an evidence-based information system for family physicians and internists.**

MORE: McMaster Online Rating of Evidence
For more information on joining us as a Sentinel Reader:
Please e-mail more@mcmaster.ca

How to cite material from Evidence-Based Medicine

Citation of material from the Notebook

Citation for material taken from a structured abstract, written without attribution by a staff member

Citation for material taken from a commentary to an article

Journals reviewed for this issue*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Ageing</td>
<td>Arch Surg</td>
<td>Hypertension</td>
<td>JAMA</td>
</tr>
<tr>
<td>Am J Cardiol</td>
<td>Arthritis Rheum</td>
<td>J Am Coll Cardiol</td>
<td></td>
</tr>
<tr>
<td>Am J Psychiatry</td>
<td>Br J Gen Pract</td>
<td>Clin Epidemiol</td>
<td></td>
</tr>
<tr>
<td>Am J Public Health</td>
<td>Br J Psychiatry</td>
<td>Fam Pract</td>
<td></td>
</tr>
<tr>
<td>Am J Respir Crit Care Med</td>
<td>Br J Surg</td>
<td>Gen Intern Med</td>
<td></td>
</tr>
<tr>
<td>Ann Emerg Med</td>
<td>CMAJ</td>
<td>Infect Dis</td>
<td></td>
</tr>
<tr>
<td>Ann Intern Med</td>
<td>Chest</td>
<td>Intern Med</td>
<td></td>
</tr>
<tr>
<td>Arch Dis Child</td>
<td>Cochrane Library</td>
<td>Lancet</td>
<td></td>
</tr>
<tr>
<td>Arch Gen Psychiatry</td>
<td>Crit Care Med</td>
<td>Med Care</td>
<td></td>
</tr>
<tr>
<td>Arch Intern Med</td>
<td>Diabetes Care</td>
<td>Med J Aust</td>
<td></td>
</tr>
<tr>
<td>Arch Neuroc</td>
<td>Gastroenterology</td>
<td>N Engl J Med</td>
<td></td>
</tr>
</tbody>
</table>

Approximately 60 additional journals are reviewed. This list is available on request.