# Ivabradine added to usual care in patients with heart failure: a systematic review with meta-analysis and Trial Sequential Analysis – supplementary material

Mathias Maagaard<sup>1,\*</sup>, Emil Eik Nielsen<sup>1,2</sup>, Naqash Javaid Sethi<sup>1</sup>, Ning Liang<sup>3,4</sup>, Si-Hong Yang<sup>4</sup>, Christian Gluud<sup>1,5</sup>; Janus Christian Jakobsen<sup>1,5</sup>

Mathias Maagaard

Phone: +45 35 45 71 76

Email: mathias.maagaard@ctu.dk /// mathias.maagaard@gmail.com

Address: Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark

<sup>&</sup>lt;sup>1</sup> Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark

<sup>&</sup>lt;sup>2</sup> Department of Cardiology, The Zealand Region, Holbæk Hospital, Holbæk, Denmark

<sup>&</sup>lt;sup>3</sup> Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China

<sup>&</sup>lt;sup>4</sup> Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China

<sup>&</sup>lt;sup>5</sup> Department of Regional Health Research, The Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark

<sup>\*</sup>Corresponding author

# **Supplement 1 – List of databases**

- Cochrane Central Register of Controlled Trials (CENTRAL)
- Medical Literature Analysis and Retrieval System Online (MEDLINE)
- Excerpta Medica database (EMBASE)
- Latin American and Carribean Health Sciences Literature (LILACS)
- Web of Science Core Collection
- Web of Science BIOSIS
- ClinicalTrials.gov
- Google Scholar
- European Medicines Agency (EMA), United States Food and Drug Administration (FDA)
- China Food and Drug Administration (CFDA)
- Medicines and Healthcare products Regulatory Agency
- World Health Organization (WHO)
- International Clinical Trials Registry Platform (ICTRP)
- Chinese Biomedical Literature Database (CBM)
- Wanfang, China National Knowledge Infrastructure (CNKI)
- Chinese Science Journal Database (VIP)

# **Supplement 2 – Search strategy**

#### **MEDLINE 31/05/2021**, n = 422

- 1. (ivabradin\* or corlanor or procoralan or corlentor).af
- 2. (random\* or blind\* or placebo\* or meta-analys\* or systematic review).af.
- 3. 1 and 2

#### **EMBASE 31/05/2021**, n = 1401

- 4. (ivabradin\* or corlanor or procoralan or corlentor).af
- 5. (random\* or blind\* or placebo\* or meta-analys\* or systematic review).af.
- 6. 1 and 2

#### Web of Science Core Collection 31/05/2021, n = 633

- 1. (ivabradin\* or corlanor or procoralan or corlentor) all fields
- 2. (random\* or blind\* or placebo\* or meta-analys\* or systematic review) all fields
- 3. 1 and 2

#### Web of Science BIOSIS previews 31/05/2021, n = 50

- 1. TI=(ivabradin\* or corlanor or procoralan or corlentor)
- 2. TI=(random\* or blind\* or placebo\* or meta-analys\* or systematic review)
- 3. 1 and 2

#### **LILACS 31/05/2021**, n = 25

- 1. Ivabradine
- 2. Ivabradina
- 3. 1 or 2

### **CENTRAL 31/05/2021**, n = 638

1. (Ivabradin\* or corlanor or Procoralan or corlentor)

#### **EudraCT 31/05/2021**, n = 46

1. ivabradine OR corlanor OR procoralan OR corlentor

# **ClinicalTrials.gov 31/05/2021**, n = 80

- 1. Ivabradine (also searched for Procoralan Corlanor, Ivabradin, Corlentor, S 16257)
- 2. Interventional studies

#### Chinese Biomedical Literature Database (CBM/Sinomed), n = 140

#1 ((("伊伐布雷定"[全字段:智能]) OR "可兰特"[全字段:智能]) OR "依伐布雷定"[全字段:智能]) OR "伊法布雷定"[全字段:智能]

#2 (("心衰"[全字段:智能]) OR "心脏衰竭"[全字段:智能]) OR "心力衰竭"[全字段:智能]

#3 ((("冠状动脉"[全字段:智能]) OR "冠脉疾病"[全字段:智能]) OR "冠脉病"[全字段:智能]) OR "冠心病"[全字段:智能]

#4 (((((("心绞痛"[全字段:智能]) OR "心肌梗死"[全字段:智能]) OR "心肌梗塞"[全字段:智能]) OR "心肌缺血"[全字段:智能]) OR "缺血性心肌病"[全字段:智能]) OR "心源性水肿"[全字段:智能]) OR "心肾综合征"[全字段:智能]

#5 (#4) OR (#3) OR (#2)

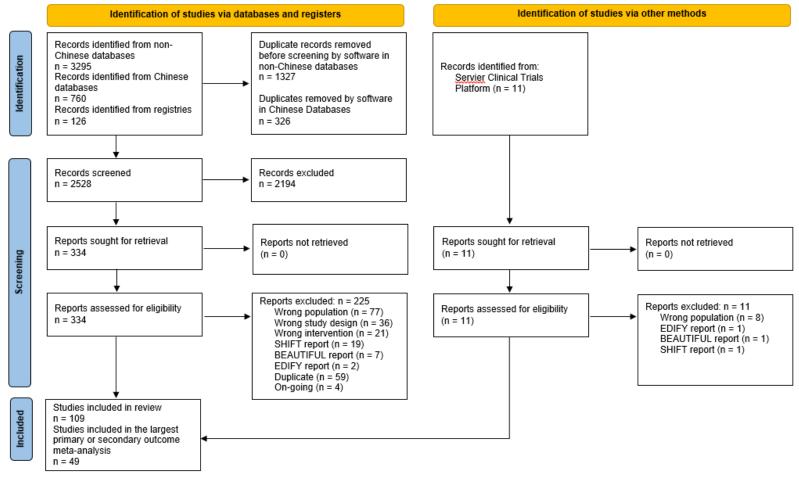
#6 ((((((("随机"[全字段:智能]) OR "meta-分析"[全字段:智能]) OR "meta分析"[全字段:智能]) OR "系统综述"[全字段:智能]) OR "荟萃分析"[全字段:智能]) OR "系统评价"[全字段:智能]) OR "安慰剂"[全字段:智能]) OR "盲法"[全字段:智能]

#7 (#6) OR (#5) OR (#1)

### Chinese Science Journal Database (VIP), n = 165

(U=伊伐布雷定 OR 可兰特 OR 依伐布雷定 OR 伊法布雷定) AND (U=(心衰 OR 心脏衰竭 OR 心力衰竭 OR 心源性水肿 OR 心肾综合征 OR 冠状动脉 OR 冠心病 OR 冠脉病 OR 冠脉疾病 OR 心肌缺血 OR 缺血性心肌病 OR 心绞痛 OR 心肌梗死 OR 心肌梗塞 OR 心功能不全) OR R=(心衰 OR 心脏衰竭 OR 心力衰竭 OR 心源性水肿 OR 心肾综合征 OR 冠状动脉 OR 冠心病 OR 冠脉病 OR 冠脉疾病 OR 心肌缺血 OR 缺血性心肌病 OR 心绞痛 OR 心肌梗死 OR 心则梗死 OR 心则能不全)) AND (R=(随机 OR meta-分析 OR meta分析 OR 荟萃分析 OR 系统评价

OR 系统综述 OR 安慰剂 OR 盲法) OR U=(随机 OR meta-分析 OR meta分析 OR 荟萃分析 OR 系统评价 OR 系统综述 OR 安慰剂 OR 盲法))


### China National Knowledge Infrastructure (CNKI), n = 255

SU=('伊伐布雷定'+'可兰特'+'依伐布雷定'+'伊法布雷定') AND SU=('心衰'+'心脏衰竭'+'心力衰竭'+'心源性水肿'+'心肾综合征'+'冠状动脉\*'+'冠心病'+'冠脉病'+'冠脉疾病'+'心肌缺血'+'缺血性心肌病'+'心绞痛'+'心肌梗死'+'心肌

## Wanfang, n = 200

主题:(伊伐布雷定 + 可兰特 + 依伐布雷定 + 伊法布雷定) \* 主题:(心衰 + 心脏衰竭 + 心力衰竭 + 心源性水肿 + 心肾综合征 + 冠状动脉 + 冠心病 + 冠脉疾病 + 冠脉病 + 心肌缺血 + 心绞痛 + 心肌梗死 + 缺血性心肌病 + 心肌梗塞 + 心功能不全) \* 全部:(随机 + meta-分析 + meta分析 + 荟萃分析 + 系统评价 + 系统综述 + 安慰剂 + 盲法)

# **Supplement 3 – PRISMA flow chart**



From: Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71, doj: 10.1136/bmj.n71. For more information, visit: http://www.prisma-statement.org/

Figure 1 – PRISMA flowchart.

# Supplement 4 - Risk of bias

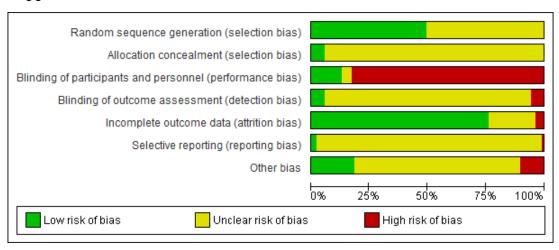



Figure 2 - Risk of bias graph.



|                   | Random sequence generation (selection bias) | Allocation concealment (selection bias) | Blinding of participants and personnel (performance bias) | Blinding of outcome assessment (detection bias) | Incomplete outcome data (attrition bias) | Selective reporting (reporting bias) | Other bias |
|-------------------|---------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------------------|--------------------------------------|------------|
| Guo 2017          | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| He 2019           | •                                           | ?                                       |                                                           | ?                                               | •                                        | ?                                    | •          |
| Hu 2017           | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Hu 2018           | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Huang J 2017      | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Kosmala 2013      | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| Li 2018           | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Li 2020           | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Li B 2020         | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Liu 2019          | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Liu 2020          | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Liu Y 2020        | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Lu 2019           | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| Lu 2020           | •                                           | ?                                       |                                                           | ?                                               | •                                        | ?                                    | ?          |
| Luo 2021          | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Ma 2016           | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Ma 2020           | •                                           | ?                                       |                                                           | ?                                               | •                                        | ?                                    | •          |
| Mansour 2011      | •                                           | ?                                       | •                                                         | •                                               | •                                        | ?                                    | •          |
| Manz 2003         | ?                                           | ?                                       |                                                           | •                                               | •                                        | ?                                    |            |
| Mao 2018          | •                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | ?          |
| Masi de Luca 2018 | ?                                           | ?                                       | ?                                                         | ?                                               | ?                                        | ?                                    | ?          |
| Moiseev 2011      | ?                                           | ?                                       | •                                                         | ?                                               | ?                                        | ?                                    | ?          |
| Nguyen 2018       | •                                           | ?                                       | •                                                         | •                                               | ?                                        | ?                                    | •          |
| Ordu 2015         | ?                                           | ?                                       |                                                           | ?                                               | •                                        | ?                                    | ?          |
| Pal 2015          | ?                                           | ?                                       | •                                                         | ?                                               | •                                        | ?                                    | •          |
| Pan 2020          | •                                           | ?                                       |                                                           | ?                                               | •                                        | ?                                    | •          |
| Potapenko 2011    | ?                                           | ?                                       |                                                           | ?                                               | ?                                        | ?                                    | ?          |

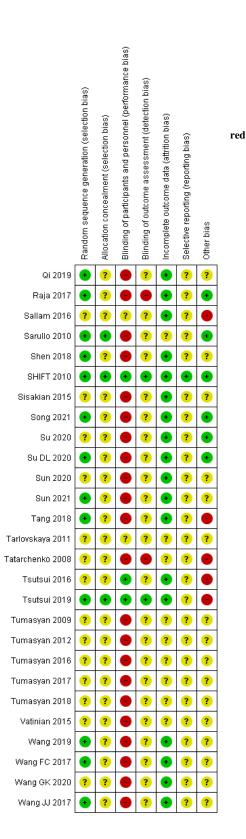





Figure 3 – Risk of bias summary. Green circles = low risk of bias; yellow circles = unclear risk of bias; circles = high risk of bias.

# **Supplement 5 - All-cause mortality** *Main analyses*

|                                        | lvabrad   | line    | Contr    | ol        |        | Risk Ratio          | Risk Ratio                         |
|----------------------------------------|-----------|---------|----------|-----------|--------|---------------------|------------------------------------|
| Study or Subgroup                      | Events    | Total   | Events   | Total     | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI                |
| Abdel-Salam 2015                       | 1         | 20      | 1        | 23        | 0.0%   | 1.15 [0.08, 17.22]  |                                    |
| Adamyan 2015                           | 19        | 51      | 27       | 53        | 0.0%   | 0.73 [0.47, 1.14]   |                                    |
| Aroutunov 2008                         | 2         | 12      | 2        | 12        | 0.0%   | 1.00 [0.17, 5.98]   |                                    |
| Barilla 2016                           | 2         | 30      | 4        | 28        | 0.0%   | 0.47 [0.09, 2.35]   |                                    |
| BEAUTIFUL 2008                         | 572       | 5479    | 547      | 5438      | 49.9%  | 1.04 [0.93, 1.16]   | <del>-</del> -                     |
| Cao 2019                               | 4         | 41      | 12       | 41        | 0.0%   | 0.33 [0.12, 0.95]   |                                    |
| CONSTATHE-DHF 2016                     | 1         | 13      | 4        | 13        | 0.0%   | 0.25 [0.03, 1.95]   |                                    |
| EDIFY 2017                             | 3         | 94      | 0        | 84        | 0.0%   | 6.26 [0.33, 119.51] |                                    |
| He 2019                                | 1         | 34      | 2        | 34        | 0.0%   | 0.50 [0.05, 5.26]   |                                    |
| Hu 2018                                | 2         | 85      | 5        | 84        | 0.0%   | 0.40 [0.08, 1.98]   |                                    |
| Mansour 2011                           | 3         | 27      | 3        | 23        | 0.0%   | 0.85 [0.19, 3.82]   |                                    |
| Moiseev 2011                           | 2         | 26      | 4        | 23        | 0.0%   | 0.44 [0.09, 2.20]   |                                    |
| Nguyen 2018                            | 1         | 14      | 0        | 5         | 0.0%   | 1.20 [0.06, 25.53]  |                                    |
| Raja 2017                              | 1         | 63      | 1        | 62        | 0.0%   | 0.98 [0.06, 15.39]  |                                    |
| SHIFT 2010                             | 503       | 3241    | 552      | 3264      | 50.1%  | 0.92 [0.82, 1.03]   | <del></del>                        |
| Tarlovskaya 2011                       | 3         | 8       | 0        | 10        | 0.0%   | 8.56 [0.51, 144.86] |                                    |
| Tsutsui 2019                           | 9         | 127     | 9        | 127       | 0.0%   | 1.00 [0.41, 2.44]   |                                    |
| Tumasyan 2016                          | 41        | 104     | 59       | 106       | 0.0%   | 0.71 [0.53, 0.95]   |                                    |
| Tumasyan 2017                          | 24        | 53      | 30       | 57        | 0.0%   | 0.86 [0.59, 1.26]   |                                    |
| Tumasyan 2018                          | 19        | 46      | 28       | 45        | 0.0%   | 0.66 [0.44, 1.00]   |                                    |
| Wang GK 2020                           | 1         | 36      | 1        | 36        | 0.0%   | 1.00 [0.07, 15.38]  |                                    |
| Zhang 2020                             | 0         | 43      | 1        | 42        | 0.0%   | 0.33 [0.01, 7.78]   |                                    |
| Total (95% CI)                         |           | 8720    |          | 8702      | 100.0% | 0.98 [0.86, 1.10]   | -                                  |
| Total events                           | 1075      |         | 1099     |           |        |                     |                                    |
| Heterogeneity: Tau <sup>2</sup> = 0.00 | Chi2 = 2. | 37, df= | 1 (P = 0 | 12); l² : | = 58%  | -                   |                                    |
| Test for overall effect: $Z = 0$       | •         |         | ,        |           |        |                     | 0.7 0.85 1 1.2 1.5                 |
|                                        |           |         |          |           |        |                     | Favours ivabradine Favours control |

Figure 4 – Forest plot of the meta-analysis of all-cause mortality using random-effecs meta-analysis including only trials at low risk of bias, except for for-profit bias. The meta-analysis showed no evidence of an difference between ivabradine versus placebo.

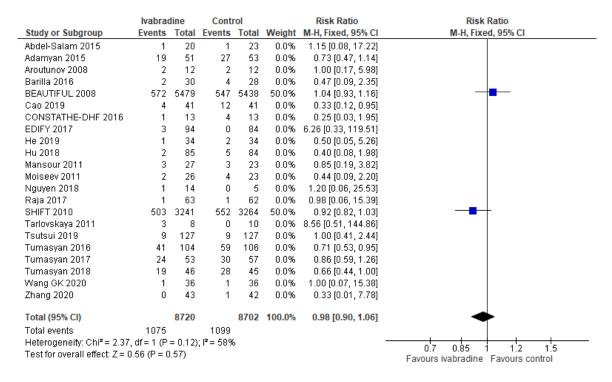



Figure 5 – Forest plot of the meta-analysis of all-cause mortality using fixed-effect meta-analysis including only trials at low risk of bias, except for for-profit bias. The meta-analysis showed no evidence of a difference between ivabradine versus placebo.

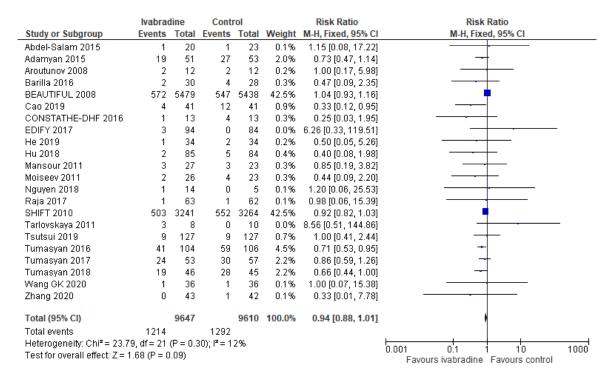



Figure 6 - Forest plot of the meta-analysis of all-cause mortality using fixed-effect meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).

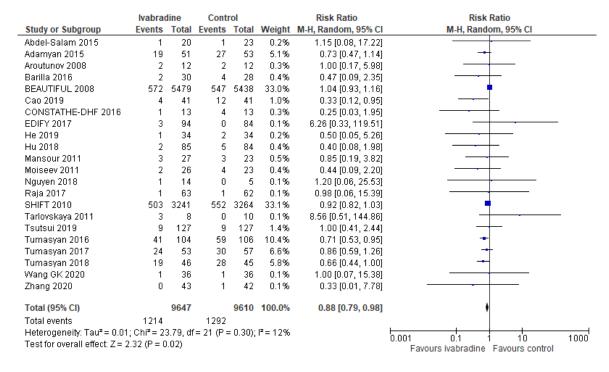
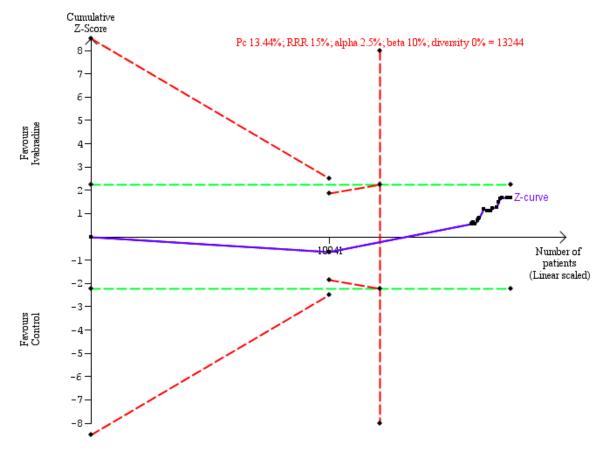
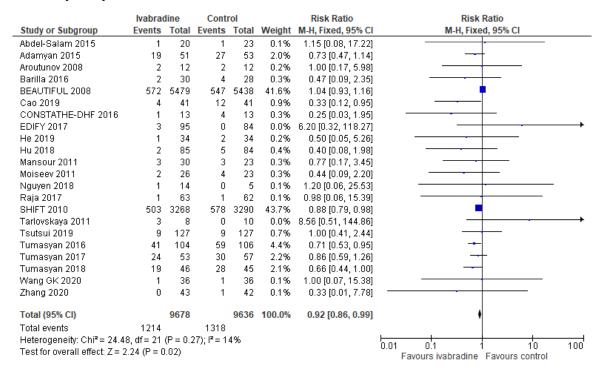





Figure 7 - Forest plot of the meta-analysis of all-cause mortality using random-effects meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine versus control (placebo or no intervention).



**Figure 8 - Trial Sequential Analysis graph of all-cause mortality.** Trial Sequential Analysis showed that we had enough information to reject a relative risk reduction of 15% or more by ivabradine versus control (placebo or no intervention). The cumulative z-curve (the blue line) breaches the boundary of futility and the required information size. Pc: prevalence in control group; RRR: relative risk ratio.

#### Sensitivity analyses



 $Figure \ 9 - Forest\ plot\ of\ the\ sensitivity\ analysis\ of\ all-cause\ mortality\ using\ best-\ compared\ with\ worst-case\ scenario.$ 

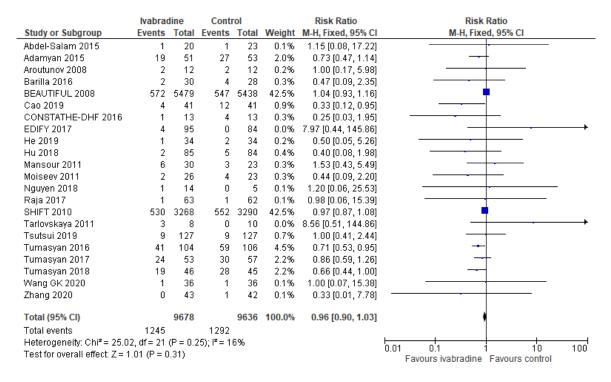
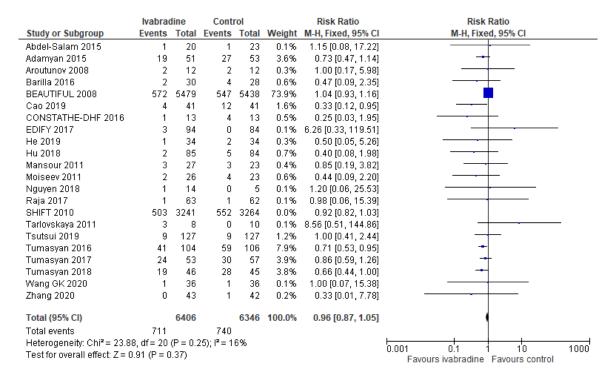




Figure 10 - Forest plot of the sensitivity analysis of all-cause mortality using worst- compared with best-case scenario.

| lvabrad    | line                                                                      | Contr                                                                                                                                                                                       | rol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Events     | Total                                                                     | <b>Events</b>                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1          | 20                                                                        | 1                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.15 [0.08, 17.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19         | 51                                                                        | 27                                                                                                                                                                                          | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73 [0.47, 1.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2          | 12                                                                        | 2                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 [0.17, 5.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2          | 30                                                                        | 4                                                                                                                                                                                           | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.47 [0.09, 2.35]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 572        | 5479                                                                      | 547                                                                                                                                                                                         | 5438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.04 [0.93, 1.16]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4          | 41                                                                        | 12                                                                                                                                                                                          | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33 [0.12, 0.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | 13                                                                        | 4                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25 [0.03, 1.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3          | 94                                                                        | 0                                                                                                                                                                                           | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.26 [0.33, 119.51]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | 34                                                                        | 2                                                                                                                                                                                           | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.50 [0.05, 5.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2          | 85                                                                        | 5                                                                                                                                                                                           | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.40 [0.08, 1.98]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3          | 27                                                                        | 3                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.85 [0.19, 3.82]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2          | 26                                                                        | 4                                                                                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.44 [0.09, 2.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | 14                                                                        | 0                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.20 [0.06, 25.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1          | 63                                                                        | 1                                                                                                                                                                                           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.98 [0.06, 15.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 503        | 3241                                                                      | 552                                                                                                                                                                                         | 3264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92 [0.82, 1.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3          | 8                                                                         | 0                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.56 [0.51, 144.86]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9          | 127                                                                       | 9                                                                                                                                                                                           | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 [0.41, 2.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 41         | 104                                                                       | 59                                                                                                                                                                                          | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.71 [0.53, 0.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24         | 53                                                                        | 30                                                                                                                                                                                          | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.86 [0.59, 1.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 19         | 46                                                                        | 28                                                                                                                                                                                          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.66 [0.44, 1.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1          | 36                                                                        | 1                                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00 [0.07, 15.38]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0          | 43                                                                        | 1                                                                                                                                                                                           | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.33 [0.01, 7.78]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 4168                                                                      |                                                                                                                                                                                             | 4172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.87 [0.79, 0.95]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 642        |                                                                           | 745                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7, df = 20 | (P = 0.8)                                                                 | 66); I² = 0                                                                                                                                                                                 | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001 0.1 10 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| .95 (P = 0 | .003)                                                                     |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.001 0.1 1 10 1000 Favours ivabradine Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | Events  1 19 2 572 4 13 3 1 2 33 2 1 1 503 3 9 41 24 19 1 0 642 7, df= 20 | 1 20<br>19 51<br>2 12<br>2 30<br>572 5479<br>4 41<br>1 13<br>3 94<br>1 34<br>2 85<br>3 27<br>2 26<br>1 1 14<br>1 63<br>503 3241<br>3 8<br>9 127<br>41 104<br>24 53<br>19 46<br>1 36<br>0 43 | Events         Total         Events           1         20         1           19         51         27           2         12         2           2         30         4           572         547         547           4         41         12           1         13         4           3         94         0           1         34         2           2         85         5           3         27         3           2         26         4           1         14         0           1         63         1           503         3241         552           3         8         0           9         127         9           41         104         59           24         53         30           19         46         28           1         36         1           0         43         1           41         28           1         36         1           0         43         1 | Events         Total         Events         Total           1         20         1         23           19         51         27         53           2         12         2         12           2         30         4         28           572         5479         547         5438           4         41         12         41           1         13         4         13           3         94         0         84           1         34         2         34           2         85         5         84           3         27         3         23           2         26         4         23           1         14         0         5           1         63         1         62           503         3241         552         3264           3         8         0         10           9         127         9         127           41         104         59         106           24         53         30         57           19         46         2 | Events         Total         Events         Total         Weight           1         20         1         23         0.1%           19         51         27         53         3.6%           2         12         2         12         0.3%           2         30         4         28         0.6%           572         5479         547         5438         0.0%           4         41         12         41         1.6%           1         13         4         13         0.5%           3         94         0         84         0.1%           1         34         2         34         0.3%           2         85         5         84         0.7%           3         27         3         23         0.4%           2         26         4         23         0.6%           1         14         0         5         0.1%           503         3241         552         3264         73.9%           41         104         59         106         7.9%           41         104         59         106 | Events         Total         Events         Total         Weight         M-H, Fixed, 95% CI           1         20         1         23         0.1%         1.15 [0.08, 17.22]           19         51         27         53         3.6%         0.73 [0.47, 1.14]           2         12         2         12         0.3%         1.00 [0.17, 5.98]           2         30         4         28         0.6%         0.47 [0.09, 2.35]           572         5479         547         5438         0.0%         1.04 [0.93, 1.16]           4         41         12         41         1.6%         0.33 [0.12, 0.95]           1         13         4         13         0.5%         0.25 [0.03, 1.95]           3         94         0         84         0.1%         0.26 [0.33, 1.95]           1         34         2         34         0.3%         0.50 [0.05, 5.26]           2         85         5         84         0.7%         0.40 [0.08, 1.98]           3         27         3         23         0.4%         0.85 [0.19, 3.82]           2         26         4         23         0.6%         0.44 [0.09, 2.20] |

 $Figure\ 11-Forest\ plot\ of\ the\ sensitivity\ analysis\ of\ all\text{-}cause\ mortality\ removing\ the\ BEAUTIFUL\ trial.$ 



 $Figure \ 12-Forest\ plot\ of\ the\ sensitivity\ analysis\ of\ all\text{-}cause\ mortality\ removing\ the\ SHIFT\ trial.$ 

#### Subgroup analyses

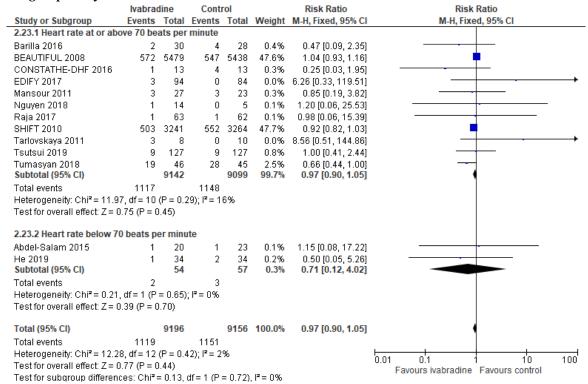



Figure 13 – Forest plot of the subgroup analyses of trials randomising participants with a heart rate at or above 70 beats per minute compared to trials randomising participants with heart rate below 70 beats per minute on all-cause mortality.

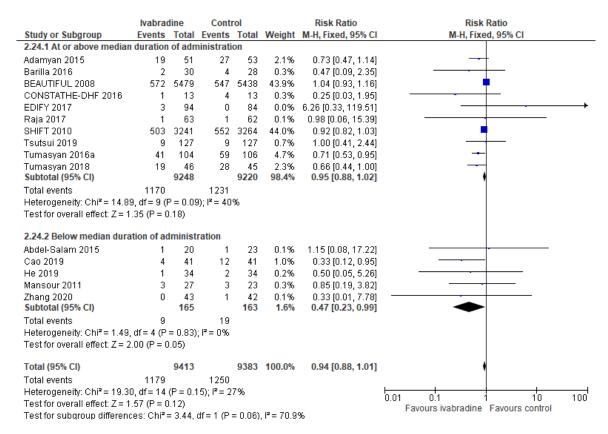



Figure 14 - Forest plot of the subgroup analyses of trials administering ivabradine at or above median duration (182.64 days) versus trials administering ivabradine below median duration on all-cause mortality.

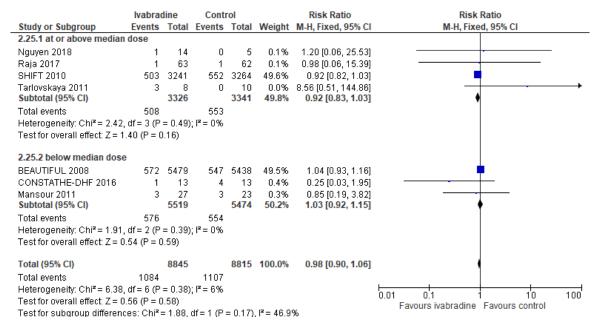



Figure 15 - Forest plot of the subgroup analyses of trials administering ivabradine at or above median daily dose (12.7 mg) compared to trials administering ivabradine below median daily dose on all-cause mortality.

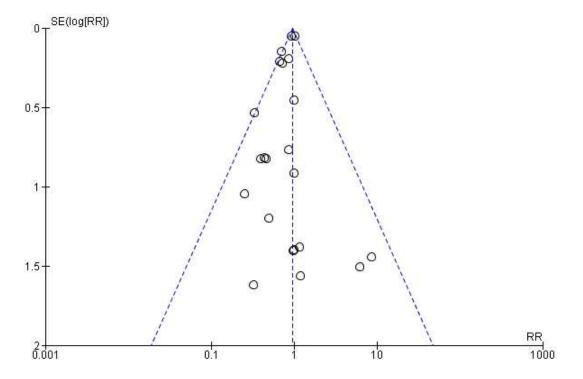



Figure 16 - Funnel plot of the analyses of all-cause mortality. The funnel plot did not indicate small study bias.

# **Supplement 6 - Serious adverse events** *Main analyses*

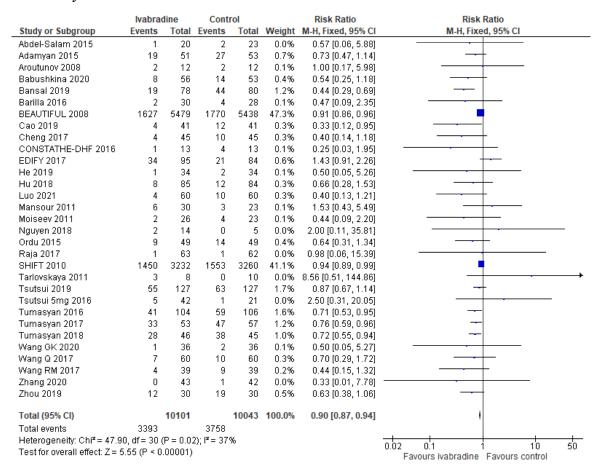



Figure 17 - Forest plot of the meta-analysis of serious adverse events using fixed-effect meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine versus control (placebo or no intervention).

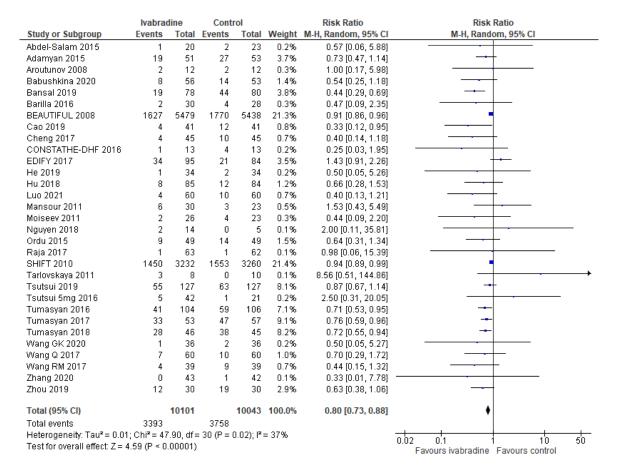



Figure 18 – Forest plot of the meta-analysis of serious adverse events using random-effects meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine versus control (placebo or no intervention).

### Sensitivity analyses

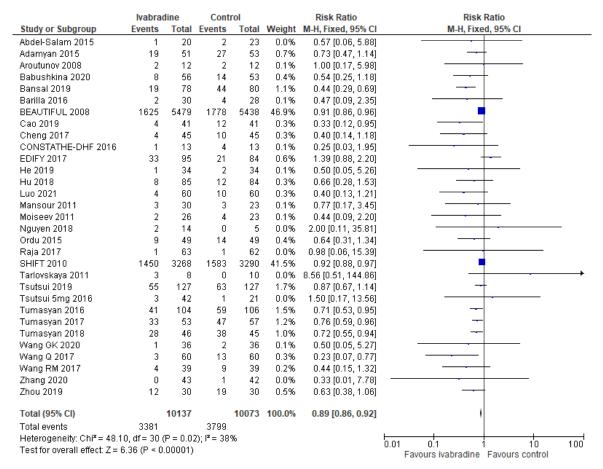



Figure 19 - Forest plot of the sensitivity analysis of serious adverse events using best- compared with worst-case scenario.

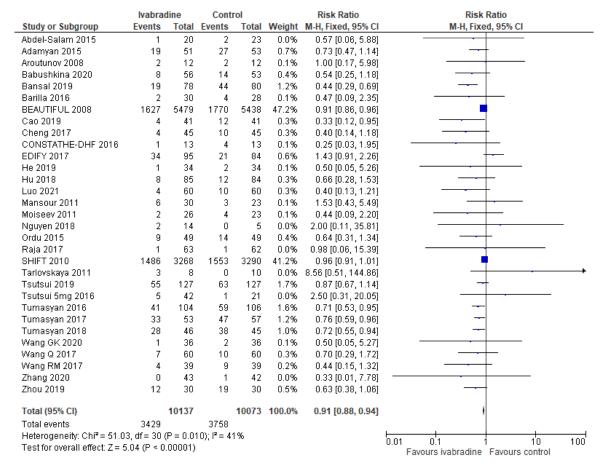



Figure 20 - Forest plot of the sensitivity analysis of serious adverse events using worst- compared with best-case scenario.

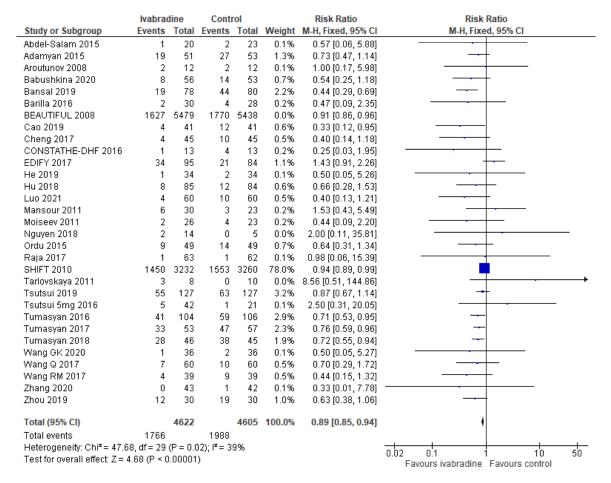



Figure 21 – Forest plot of the sensitivity analysis of serious adverse events removing the BEAUTIFUL trial.

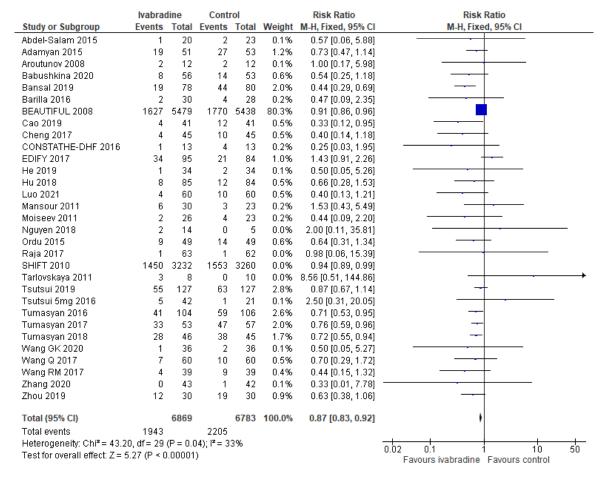



Figure 22 – Forest plot of the sensitivity analysis of serious adverse events removing the SHIFT trial.

### Subgroup analyses

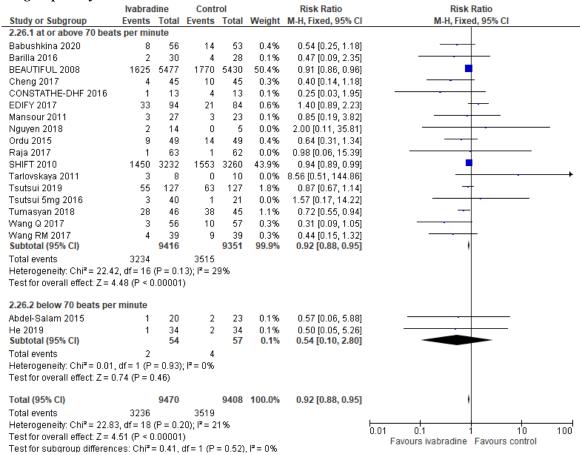



Figure 23 - Forest plot of the subgroup analyses of trials randomising participants with a heart rate at or above 70 beats per minute compared to trials randomising participants with heart rate below 70 beats per minute on all-cause mortality.

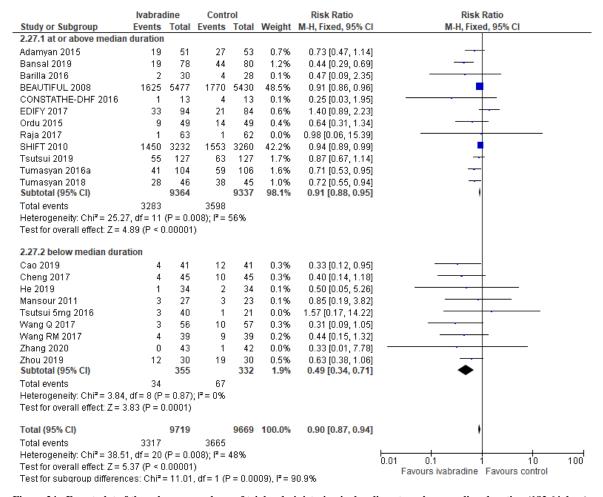



Figure 24 - Forest plot of the subgroup analyses of trials administering ivabradine at or above median duration (182.64 days) compared to trials administering ivabradine below median duration on serious adverse events.

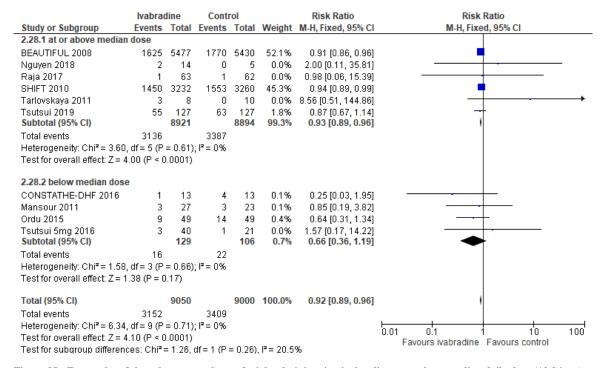



Figure 25 - Forest plot of the subgroup analyses of trials administering ivabradine at or above median daily dose (12.36 mg) compared to trials administering ivabradine below median daily dose on serious adverse events.

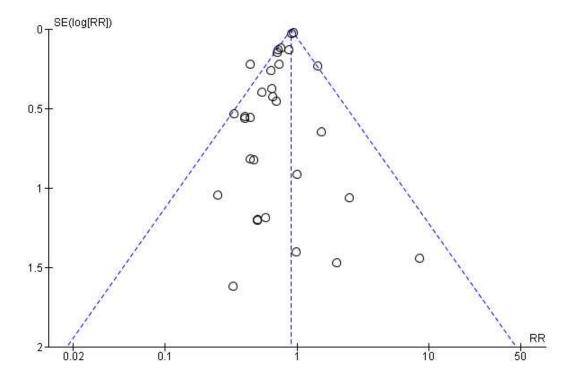



Figure 26 – Funnel plot of the analysis of serious adverse events. The funnel plot did not indicate small study bias.

# **Supplement 7 - Quality of life**

# Main analyses for trials using Kansas City Cardiomyopathy Questionnaire (KCCQ)

|                                                                            | Ival     | bradin | е                 | C    | ontrol |                   |                        | Mean Difference                                   | Mean Difference                                         |
|----------------------------------------------------------------------------|----------|--------|-------------------|------|--------|-------------------|------------------------|---------------------------------------------------|---------------------------------------------------------|
| Study or Subgroup                                                          | Mean     | SD     | Total             | Mean | SD     | Total             | Weight                 | IV, Fixed, 95% CI                                 | IV, Fixed, 95% CI                                       |
| 2.47.1 KCCQ change                                                         | score    |        |                   |      |        |                   |                        |                                                   |                                                         |
| SHIFT 2010<br>Subtotal (95% CI)                                            | 6.7      | 17.3   | 842<br><b>842</b> | 4.3  | 16.7   | 839<br><b>839</b> | 94.5%<br><b>94.5</b> % | 2.40 [0.77, 4.03]<br><b>2.40 [0.77, 4.03</b> ]    | <b>*</b>                                                |
| Heterogeneity: Not ap                                                      | plicable |        |                   |      |        |                   |                        |                                                   |                                                         |
| Test for overall effect:                                                   | Z = 2.89 | (P = 0 | 0.004)            |      |        |                   |                        |                                                   |                                                         |
| 2.47.2 KCCQ mean so                                                        | соге     |        |                   |      |        |                   |                        |                                                   |                                                         |
| Sallam 2016<br>Subtotal (95% CI)                                           | 80       | 14     | 50<br><b>50</b>   | 68   | 20     | 50<br><b>50</b>   | 5.5%<br><b>5.5%</b>    | 12.00 [5.23, 18.77]<br><b>12.00 [5.23, 18.77]</b> | <b>→</b>                                                |
| Heterogeneity: Not ap                                                      | plicable |        |                   |      |        |                   |                        |                                                   |                                                         |
| Test for overall effect:                                                   | Z = 3.48 | (P = 0 | ).0005)           |      |        |                   |                        |                                                   |                                                         |
| Total (95% CI)                                                             |          |        | 892               |      |        | 889               | 100.0%                 | 2.92 [1.34, 4.50]                                 | •                                                       |
| Heterogeneity: Chi²=<br>Test for overall effect:<br>Test for subgroup diff | Z = 3.63 | (P = 0 | ).0003)           |      |        | 07), I²=          | = 86.3%                |                                                   | -100 -50 0 50 100<br>Favours control Favours ivabradine |

Figure 27 – Forest plot of the meta-analysis of quality of life from trials using the KCCQ using fixed-effect meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine.

|                                                                             | Ival     | bradin | е                 | C    | ontrol |                   |                        | Mean Difference                                   | Mean Dif                 | ference               |              |
|-----------------------------------------------------------------------------|----------|--------|-------------------|------|--------|-------------------|------------------------|---------------------------------------------------|--------------------------|-----------------------|--------------|
| Study or Subgroup                                                           | Mean     | SD     | Total             | Mean | SD     | Total             | Weight                 | IV, Random, 95% CI                                | IV, Randoi               | m, 95% CI             |              |
| 2.47.1 KCCQ change                                                          | score    |        |                   |      |        |                   |                        |                                                   |                          |                       |              |
| SHIFT 2010<br>Subtotal (95% CI)                                             | 6.7      | 17.3   | 842<br><b>842</b> | 4.3  | 16.7   | 839<br><b>839</b> | 56.1%<br><b>56.1</b> % | 2.40 [0.77, 4.03]<br><b>2.40 [0.77, 4.03]</b>     |                          | •                     |              |
| Heterogeneity: Not ap                                                       | plicable |        |                   |      |        |                   |                        |                                                   |                          |                       |              |
| Test for overall effect:                                                    | Z = 2.89 | (P = 0 | 0.004)            |      |        |                   |                        |                                                   |                          |                       |              |
| 2.47.2 KCCQ mean so                                                         | соге     |        |                   |      |        |                   |                        |                                                   |                          |                       |              |
| Sallam 2016<br>Subtotal (95% CI)                                            | 80       | 14     | 50<br><b>50</b>   | 68   | 20     | 50<br><b>50</b>   | 43.9%<br><b>43.9</b> % | 12.00 [5.23, 18.77]<br><b>12.00 [5.23, 18.77]</b> |                          | <b>+</b>              |              |
| Heterogeneity: Not ap                                                       | plicable |        |                   |      |        |                   |                        |                                                   |                          |                       |              |
| Test for overall effect:                                                    | Z= 3.48  | (P = 0 | 0.0005)           |      |        |                   |                        |                                                   |                          |                       |              |
| Total (95% CI)                                                              |          |        | 892               |      |        | 889               | 100.0%                 | 6.61 [-2.72, 15.95]                               | -                        | •                     |              |
| Heterogeneity: Tau² =<br>Test for overall effect:<br>Test for subgroup diff | Z=1.39   | (P = 0 | 0.16)             | ,    |        |                   |                        |                                                   | <br>50 0<br>ours control | ) 50<br>Favours ivabr | 100<br>adine |

Figure 28 – Forest plot of the meta-analysis of quality of life from trials using the Kansas City Cardiomyopathy Questionnaire (KCCQ) using random-effects meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine and control.

# Sensitivity analyses for trials using KCCQ.

|                                  | Iva      | bradin    | е                   | (           | Control |                     |                        | Mean Difference     | Mean Difference                    |
|----------------------------------|----------|-----------|---------------------|-------------|---------|---------------------|------------------------|---------------------|------------------------------------|
| Study or Subgroup                | Mean     | SD        | Total               | Mean        | SD      | Total               | Weight                 | IV, Fixed, 95% CI   | IV, Fixed, 95% CI                  |
| 2.48.1 KCCQ change               | score    |           |                     |             |         |                     |                        |                     |                                    |
| SHIFT 2010<br>Subtotal (95% CI)  | 15.5     | 21.22     | 1129<br><b>1129</b> | 4.8         | 20.59   | 1153<br><b>1153</b> | 94.0%<br><b>94.0</b> % |                     |                                    |
| Heterogeneity: Not ap            | plicable |           |                     |             |         |                     |                        |                     |                                    |
| Test for overall effect:         | Z = 12.2 | 2 (P < 0  | 0.0000              | 1)          |         |                     |                        |                     |                                    |
| 2.48.2 KCCQ mean s               | соге     |           |                     |             |         |                     |                        |                     |                                    |
| Sallam 2016<br>Subtotal (95% CI) | 80       | 14        | 50<br><b>50</b>     | 68          | 20      | 50<br><b>50</b>     | 6.0%<br><b>6.0</b> %   |                     | <b>→</b>                           |
| Heterogeneity: Not ap            |          |           |                     |             |         |                     |                        |                     |                                    |
| Test for overall effect:         | Z = 3.48 | (P = U.   | 0005)               |             |         |                     |                        |                     |                                    |
| Total (95% CI)                   |          |           | 1179                |             |         | 1203                | 100.0%                 | 10.78 [9.12, 12.44] | ♦                                  |
| Heterogeneity: Chi²=             | 0.13, df | = 1 (P =  | = 0.72);            | $ ^2 = 0\%$ |         |                     |                        |                     | -100 -50 0 50 100                  |
| Test for overall effect:         | Z = 12.7 | '0 (P < 0 | 0.0000              | 1)          |         |                     |                        |                     | Favours ivabradine Favours control |
| Test for subgroup diff           | erences  | : Chi²=   | 0.13 c              | f=1/P       | = 0.721 | $I^2 = 0.9$         | 6                      |                     | Tarouro Trabitanno Tarouro Control |

Figure 29 – Forest plot of the sensitivity analysis of quality of life (KCCQ) using best-compared with worst-case scenario.

|                                                   | lva      | abradin   | е                   | (        | Control |                     |                     | Mean Difference                                                   | Mean Difference                                      |
|---------------------------------------------------|----------|-----------|---------------------|----------|---------|---------------------|---------------------|-------------------------------------------------------------------|------------------------------------------------------|
| Study or Subgroup                                 | Mean     | SD        | Total               | Mean     | SD      | Total               | Weight              | IV, Fixed, 95% CI                                                 | IV, Fixed, 95% CI                                    |
| 2.49.1 KCCQ change                                | score    |           |                     |          |         |                     |                     |                                                                   |                                                      |
| SHIFT 2010<br>Subtotal (95% CI)                   | 2.1      | 21.22     | 1129<br><b>1129</b> |          | 20.59   | 1153<br><b>1153</b> |                     | -11.30 [-13.02, -9.58]<br>- <b>11.30 [-13.02</b> , - <b>9.58]</b> | <b>-</b>                                             |
| Heterogeneity: Not ap                             | plicable | !         |                     |          |         |                     |                     |                                                                   |                                                      |
| Test for overall effect:                          | Z=12.9   | 91 (P < 0 | 0.0000              | 1)       |         |                     |                     |                                                                   |                                                      |
| 2.49.2 KCCQ mean s                                | core     |           |                     |          |         |                     |                     |                                                                   |                                                      |
| Sallam 2016<br>Subtotal (95% CI)                  | 80       | 14        | 50<br><b>50</b>     | 68       | 20      | 50<br><b>50</b>     | 6.0%<br><b>6.0%</b> | 12.00 [5.23, 18.77]<br><b>12.00 [5.23, 18.77]</b>                 | <b>→</b>                                             |
| Heterogeneity: Not ap<br>Test for overall effect: | •        |           | 0005)               |          |         |                     |                     |                                                                   |                                                      |
| Total (95% CI)                                    |          |           | 1179                |          |         | 1203                | 100.0%              | -9.89 [-11.56, -8.23]                                             | •                                                    |
| Heterogeneity: Chi² =<br>Test for overall effect: | Z=11.8   | 66 (P < 0 | 0.0000              | 1)       |         |                     |                     |                                                                   | -100 -50 0 50 100 Favours ivabradine Favours control |
| Test for subgroup diff                            | erences  | : Chi²=   | 42.79               | df = 1/6 | P≼N∩∩   | INN1) P             | '= 97.7%            |                                                                   |                                                      |

 $\label{eq:figure 30-Forest plot of the sensitivity analysis of quality of life (MLWHFQ) using worst-compared with best-case scenario.$ 

# Subgroup analyses for trials using the KCCQ

|                                   | Ival     | bradin  | е                 | C          | ontrol  |                       |                        | Mean Difference                                   | Mean Difference                                         |
|-----------------------------------|----------|---------|-------------------|------------|---------|-----------------------|------------------------|---------------------------------------------------|---------------------------------------------------------|
| Study or Subgroup                 | Mean     | SD      | Total             | Mean       | SD      | Total                 | Weight                 | IV, Fixed, 95% CI                                 | IV, Fixed, 95% CI                                       |
| 2.56.1 KCCQ at or ab              | ove med  | dian dı | uration           |            |         |                       |                        |                                                   | <u>L</u>                                                |
| SHIFT 2010<br>Subtotal (95% CI)   | 6.7      | 17.3    | 842<br><b>842</b> | 4.3        | 16.7    | 839<br><b>839</b>     | 94.5%<br><b>94.5</b> % | 2.40 [0.77, 4.03]<br><b>2.40 [0.77, 4.03</b> ]    |                                                         |
| Heterogeneity: Not ap             | plicable | !       |                   |            |         |                       |                        |                                                   |                                                         |
| Test for overall effect:          | Z = 2.89 | (P = 0  | 0.004)            |            |         |                       |                        |                                                   |                                                         |
| 2.56.2 KCCQ below r               | nedian d | luratio | n                 |            |         |                       |                        |                                                   |                                                         |
| Sallam 2016<br>Subtotal (95% CI)  | 80       | 14      | 50<br><b>50</b>   | 68         | 20      | 50<br><b>50</b>       |                        | 12.00 [5.23, 18.77]<br><b>12.00 [5.23, 18.77]</b> |                                                         |
| Heterogeneity: Not as             | plicable | !       |                   |            |         |                       |                        |                                                   |                                                         |
| Test for overall effect:          | Z= 3.48  | (P = 0  | 0.0005)           |            |         |                       |                        |                                                   |                                                         |
| Total (95% CI)                    |          |         | 892               |            |         | 889                   | 100.0%                 | 2.92 [1.34, 4.50]                                 | •                                                       |
| Heterogeneity: Chi <sup>2</sup> = | 7.31, df | = 1 (P  | = 0.00            | 7); I² = 8 | 6%      |                       |                        |                                                   | 100 100 100                                             |
| Test for overall effect:          | Z = 3.63 | (P = 0  | 0.0003)           |            |         |                       |                        |                                                   | -100 -50 0 50 100<br>Favours control Favours ivabradine |
| Test for subgroup diff            | erences  | : Chi²: | = 7.31,           | df = 1 (i  | o.0 = 9 | 07), l <sup>2</sup> : | = 86.3%                |                                                   | r avours control Pavours Ivabilaurile                   |

Figure~31-Forest~plot~of~the~subgroup~analyses~of~trials~administering~ivabradine~at~or~above~median~duration~(90.66~days)~compared~to~trials~administering~ivabradine~below~median~duration~on~quality~of~life~using~the~KCCQ.

# Main analyses for trials using Minnesota Living With Heart Failure Questionnaire (MLWHFQ)

|                                   | Ival       | bradin     | e               | C        | ontrol  |                      |                       | Mean Difference                                      | Mean Difference                                  |
|-----------------------------------|------------|------------|-----------------|----------|---------|----------------------|-----------------------|------------------------------------------------------|--------------------------------------------------|
| Study or Subgroup                 | Mean       | SD         | Total           | Mean     | SD      | Total                | Weight                | IV, Random, 95% CI                                   | IV, Random, 95% CI                               |
| 2.50.1 MLWHFQ mea                 | an score   |            |                 |          |         |                      |                       |                                                      |                                                  |
| Abdel-Salam 2015                  | 46.4       | 7.3        | 20              | 51.7     | 6.6     | 23                   | 8.8%                  | -5.30 [-9.48, -1.12]                                 | <del></del>                                      |
| Sarullo 2010                      | 31.2       | 2.6        | 30              | 37.5     | 1.9     | 30                   | 46.3%                 | -6.30 [-7.45, -5.15]                                 |                                                  |
| Zeng FC 2019<br>Subtotal (95% CI) | 27.44      | 4.26       | 33<br><b>83</b> | 32.21    | 4.79    | 32<br><b>85</b>      | 23.9%<br><b>79.0%</b> | -4.77 [-6.98, -2.56]<br>- <b>5.93 [-6.93, -4.94]</b> | <u>→</u>                                         |
| Heterogeneity: Tau <sup>2</sup> : | = 0.00; CI | hi² = 1.   | .55, df=        | = 2 (P = | 0.46);  | $l^2 = 0\%$          | ,                     |                                                      |                                                  |
| Test for overall effect           | : Z= 11.7  | '2 (P <    | 0.0000          | 01)      |         |                      |                       |                                                      |                                                  |
| 2.50.2 MLWHFQ cha                 | nge scor   | ге         |                 |          |         |                      |                       |                                                      |                                                  |
| Mansour 2011                      | -12.3      | 3.3        | 30              | -8.7     | 5.2     | 23                   | 21.0%                 | -3.60 [-6.03, -1.17]                                 |                                                  |
| Subtotal (95% CI)                 |            |            | 30              |          |         | 23                   | 21.0%                 | -3.60 [-6.03, -1.17]                                 | •                                                |
| Heterogeneity: Not a              | pplicable  |            |                 |          |         |                      |                       |                                                      |                                                  |
| Test for overall effect           | : Z= 2.90  | (P = 0     | 0.004)          |          |         |                      |                       |                                                      |                                                  |
| Total (95% CI)                    |            |            | 113             |          |         | 108                  | 100.0%                | -5.28 [-6.60, -3.96]                                 | •                                                |
| Heterogeneity: Tau <sup>2</sup> : | = 0.64; CI | $hi^2 = 4$ | .58, df=        | = 3 (P = | 0.21);  | l <sup>2</sup> = 35' | %                     | _                                                    | -10 -5 0 5 10                                    |
| Test for overall effect           | : Z = 7.82 | (P < 0     | 0.00001         | 1)       |         |                      |                       |                                                      | -10 -5 0 5 10 Favours ivabradine Favours control |
| Test for subgroup dit             | fferences  | Chi²⊹      | = 3.04          | df = 1 G | P = 0.0 | 8). I² =             | 67.1%                 |                                                      | ravours ivabraume Favours control                |

Figure 32 – Forest plot of the meta-analysis of quality of life from trials using the MLWHFQ using random-effects meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine and control.

|                                                   | Ival     | bradin  | е               | C              | ontrol  |                 |                       | Mean Difference                                       | Mean Difference                                   |
|---------------------------------------------------|----------|---------|-----------------|----------------|---------|-----------------|-----------------------|-------------------------------------------------------|---------------------------------------------------|
| Study or Subgroup                                 | Mean     | SD      | Total           | Mean           | SD      | Total           | Weight                | IV, Fixed, 95% CI                                     | IV, Fixed, 95% CI                                 |
| 2.50.1 MLWHFQ mea                                 | n score  |         |                 |                |         |                 |                       |                                                       |                                                   |
| Abdel-Salam 2015                                  | 46.4     | 7.3     | 20              | 51.7           | 6.6     | 23              | 4.8%                  | -5.30 [-9.48, -1.12]                                  | <del></del>                                       |
| Sarullo 2010                                      | 31.2     | 2.6     | 30              | 37.5           | 1.9     | 30              | 63.6%                 | -6.30 [-7.45, -5.15]                                  | -                                                 |
| Zeng FC 2019<br>Subtotal (95% CI)                 | 27.44    | 4.26    | 33<br><b>83</b> | 32.21          | 4.79    | 32<br><b>85</b> | 17.3%<br><b>85.7%</b> | -4.77 [-6.98, -2.56]<br>- <b>5.93 [-6.93, -4.94</b> ] | <b>→</b>                                          |
| Heterogeneity: Chi <sup>z</sup> =                 | 1.55, df | = 2 (P  | = 0.46          | $     ^2 = 09$ | 6       |                 |                       |                                                       |                                                   |
| Test for overall effect:                          | Z = 11.7 | 2 (P <  | 0.0000          | 01)            |         |                 |                       |                                                       |                                                   |
| 2.50.2 MLWHFQ chan                                | ige scoi | re      |                 |                |         |                 |                       |                                                       |                                                   |
| Mansour 2011<br>Subtotal (95% CI)                 | -12.3    | 3.3     | 30<br><b>30</b> | -8.7           | 5.2     | 23<br><b>23</b> |                       | -3.60 [-6.03, -1.17]<br>- <b>3.60 [-6.03, -1.17]</b>  | <del>-</del>                                      |
| Heterogeneity: Not ap<br>Test for overall effect: |          |         | 0.004)          |                |         |                 |                       |                                                       |                                                   |
| Total (95% CI)                                    |          |         | 113             |                |         | 108             | 100.0%                | -5.60 [-6.52, -4.68]                                  | •                                                 |
| Heterogeneity: Chi² =<br>Test for overall effect: |          |         |                 |                | %       |                 |                       | -                                                     | -10 -5 0 5 10  Favours ivabradine Favours control |
| Test for subgroup diff                            | erences  | : Chi²: | = 3.04,         | df = 1 (F      | P = 0.0 | 8), I²=         | 67.1%                 |                                                       | r around traditatine i avourd control             |

Figure 33 – Forest plot of the meta-analysis of quality of life from trials using the MLWHFQ using fixed-effect meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine.

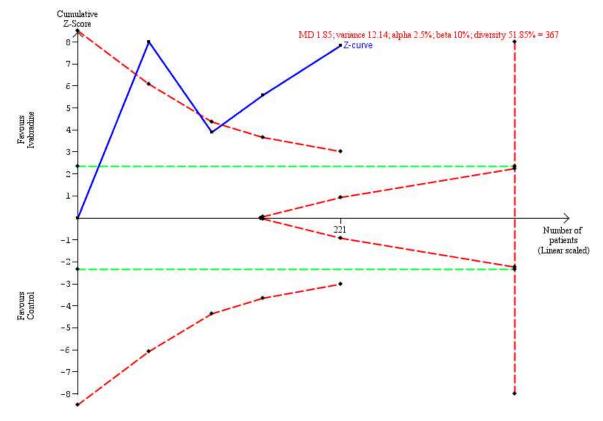



Figure 34 – Trial Sequential Analysis graph of quality of life from trials using the MLWHFQ. Trial Sequential Analysis showed that we had enough information to detect a mean difference of -5.60 points of ivabradine versus control (placebo or no intervention). The cumulative z-curve (the blue line) breached the boundary of benefit. MD: mean difference (SD/2 from the control group).

# Sensitivity analyses of quality of life from trials using the MLWHFQ.

|                                   | lva        | bradin  | e               | C          | ontrol  |                     |                       | Mean Difference                                      | Mean Difference                                  |  |  |  |
|-----------------------------------|------------|---------|-----------------|------------|---------|---------------------|-----------------------|------------------------------------------------------|--------------------------------------------------|--|--|--|
| Study or Subgroup                 | Mean       | SD      | Total           | Mean       | SD      | Total               | Weight                | IV, Random, 95% CI                                   | IV, Random, 95% CI                               |  |  |  |
| 2.51.1 MLWHFQ mea                 | an score   |         |                 |            |         |                     |                       |                                                      |                                                  |  |  |  |
| Abdel-Salam 2015                  | 46.4       | 7.3     | 20              | 51.7       | 6.6     | 23                  | 8.8%                  | -5.30 [-9.48, -1.12]                                 | <del></del>                                      |  |  |  |
| Sarullo 2010                      | 31.2       | 2.6     | 30              | 37.5       | 1.9     | 30                  | 46.3%                 | -6.30 [-7.45, -5.15]                                 | -                                                |  |  |  |
| Zeng FC 2019<br>Subtotal (95% CI) | 27.44      | 4.26    | 33<br><b>83</b> | 32.21      | 4.79    | 32<br><b>85</b>     | 23.9%<br><b>79.0%</b> | -4.77 [-6.98, -2.56]<br>- <b>5.93 [-6.93, -4.94]</b> | <b>→</b>                                         |  |  |  |
| Heterogeneity: Tau <sup>2</sup> : | = 0.00; C  | hi² = 1 | .55, df :       | = 2 (P =   | 0.46);  | $I^2 = 0\%$         | ,                     |                                                      |                                                  |  |  |  |
| Test for overall effect           |            |         |                 |            |         |                     |                       |                                                      |                                                  |  |  |  |
|                                   |            |         |                 |            |         |                     |                       |                                                      |                                                  |  |  |  |
| 2.51.2 MLWHFQ cha                 | nge sco    | re      |                 |            |         |                     |                       |                                                      |                                                  |  |  |  |
| Mansour 2011                      | -12.3      | 3.3     | 30              | -8.7       | 5.2     | 23                  | 21.0%                 | -3.60 [-6.03, -1.17]                                 |                                                  |  |  |  |
| Subtotal (95% CI)                 |            |         | 30              |            |         | 23                  | 21.0%                 | -3.60 [-6.03, -1.17]                                 | •                                                |  |  |  |
| Heterogeneity: Not a              | pplicable  | !       |                 |            |         |                     |                       |                                                      |                                                  |  |  |  |
| Test for overall effect           | : Z = 2.90 | (P=(    | 0.004)          |            |         |                     |                       |                                                      |                                                  |  |  |  |
| Total (95% CI)                    |            |         | 113             |            |         | 108                 | 100.0%                | -5.28 [-6.60, -3.96]                                 | •                                                |  |  |  |
| Heterogeneity: Tau <sup>2</sup> : | = 0.64; C  | hi² = 4 | .58, df :       | = 3 (P =   | 0.21);  | l <sup>2</sup> = 35 | %                     | -                                                    | -10 -5 0 5 10                                    |  |  |  |
| Test for overall effect           | Z = 7.82   | (P < 0  | 0.00001         | 1)         |         |                     |                       |                                                      | -10 -5 0 5 10 Favours ivabradine Favours control |  |  |  |
| Test for subgroup dif             | fferences  | : Chi²  | = 3.04.         | df = 1 (1) | P = 0.0 | 18), I² =           | 67.1%                 |                                                      | Favours (vabraulite Favours Control              |  |  |  |

Figure~35-Forest~plot~of~the~sensitivity~analysis~of~quality~of~life~(MLWHFQ)~using~best-compared~with~worst-case~scenario.

|                                                                             | Ival     | bradin     | e               | C      | ontrol |                 |                       | Mean Difference                                      | Mean Difference                                     |
|-----------------------------------------------------------------------------|----------|------------|-----------------|--------|--------|-----------------|-----------------------|------------------------------------------------------|-----------------------------------------------------|
| Study or Subgroup                                                           | Mean     | SD         | Total           | Mean   | SD     | Total           | Weight                | IV, Random, 95% CI                                   | IV, Random, 95% CI                                  |
| 2.52.1 MLWHFQ mea                                                           | n score  |            |                 |        |        |                 |                       |                                                      |                                                     |
| Abdel-Salam 2015                                                            | 46.4     | 7.3        | 20              | 51.7   | 6.6    | 23              | 8.8%                  | -5.30 [-9.48, -1.12]                                 | <del></del>                                         |
| Sarullo 2010                                                                | 31.2     | 2.6        | 30              | 37.5   | 1.9    | 30              | 46.3%                 | -6.30 [-7.45, -5.15]                                 | -                                                   |
| Zeng FC 2019<br>Subtotal (95% CI)                                           | 27.44    | 4.26       | 33<br><b>83</b> | 32.21  | 4.79   | 32<br><b>85</b> | 23.9%<br><b>79.0%</b> | -4.77 [-6.98, -2.56]<br>- <b>5.93 [-6.93, -4.94]</b> | <b>→</b>                                            |
| Heterogeneity: Tau <sup>2</sup> =                                           | 0.00; CI | $hi^2 = 1$ | .55, df=        | 2 (P = | 0.46); | $l^2 = 0\%$     | ,                     |                                                      |                                                     |
| Test for overall effect:                                                    | Z = 11.7 | '2 (P <    | 0.0000          | )1)    |        |                 |                       |                                                      |                                                     |
| 2.52.2 MLWHFQ char                                                          | ige scoi | re         |                 |        |        |                 |                       |                                                      |                                                     |
| Mansour 2011<br>Subtotal (95% CI)                                           | -12.3    | 3.3        | 30<br><b>30</b> | -8.7   | 5.2    | 23<br><b>23</b> | 21.0%<br><b>21.0%</b> | -3.60 [-6.03, -1.17]<br>- <b>3.60 [-6.03, -1.17]</b> | <del></del>                                         |
| Heterogeneity: Not ap<br>Test for overall effect:                           | •        |            | 0.004)          |        |        |                 |                       |                                                      |                                                     |
| Total (95% CI)                                                              |          |            | 113             |        |        | 108             | 100.0%                | -5.28 [-6.60, -3.96]                                 | •                                                   |
| Heterogeneity: Tau² =<br>Test for overall effect:<br>Test for subgroup diff | Z = 7.82 | (P < 0     | 0.00001         | )      |        |                 |                       |                                                      | -10 -5 0 5 10<br>Favours ivabradine Favours control |

Figure~36-Forest~plot~of~the~sensitivity~analysis~of~quality~of~life~(MLWHFQ)~using~worst-~compared~with~best-case~scenario.



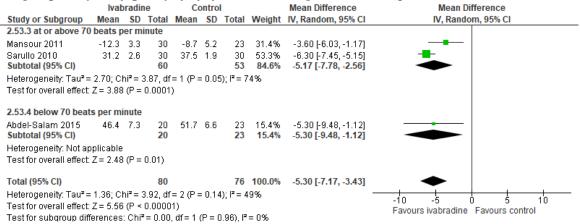



Figure 37 - Forest plot of the subgroup analyses of trials randomising participants with a heart rate at or above 70 beats per minute compared trials randomising participants with heart rate below 70 beats per minute on quality of life using the MLWHFQ.

|                                   | Ival       | bradin               | е               | C         | ontrol  |                      |                       | Mean Difference                                      | Mean Difference                                     |  |  |  |
|-----------------------------------|------------|----------------------|-----------------|-----------|---------|----------------------|-----------------------|------------------------------------------------------|-----------------------------------------------------|--|--|--|
| Study or Subgroup                 | Mean       | SD                   | Total           | Mean      | SD      | Total                | Weight                | IV, Random, 95% CI                                   | IV, Random, 95% CI                                  |  |  |  |
| 2.54.3 at or above m              | edian du   | ıration              |                 |           |         |                      |                       |                                                      |                                                     |  |  |  |
| Mansour 2011<br>Subtotal (95% CI) | -12.3      | 3.3                  | 30<br><b>30</b> | -8.7      | 5.2     | 23<br><b>23</b>      | 39.2%<br><b>39.2%</b> | -3.60 [-6.03, -1.17]<br>- <b>3.60 [-6.03, -1.17]</b> | <b>-</b>                                            |  |  |  |
| Heterogeneity: Not ap             | pplicable  |                      |                 |           |         |                      |                       |                                                      |                                                     |  |  |  |
| Test for overall effect:          | Z = 2.90   | (P=0                 | 0.004)          |           |         |                      |                       |                                                      |                                                     |  |  |  |
| 2.54.4 below median               | duratio    | n                    |                 |           |         |                      |                       |                                                      |                                                     |  |  |  |
| Abdel-Salam 2015                  | 46.4       | 7.3                  | 20              | 51.7      | 6.6     | 23                   | 13.2%                 | -5.30 [-9.48, -1.12]                                 |                                                     |  |  |  |
| Zeng FC 2019                      | 27.44      | 4.26                 | 33              | 32.21     | 4.79    | 32                   | 47.6%                 | -4.77 [-6.98, -2.56]                                 | <del></del>                                         |  |  |  |
| Subtotal (95% CI)                 |            |                      | 53              |           |         | 55                   | 60.8%                 | -4.89 [-6.84, -2.93]                                 | •                                                   |  |  |  |
| Heterogeneity: Tau² =             | = 0.00; CI | hi² = 0              | .05, df :       | = 1 (P =  | 0.83);  | $I^2 = 0\%$          |                       |                                                      |                                                     |  |  |  |
| Test for overall effect:          | Z= 4.91    | (P < 0               | 0.0000          | )         |         |                      |                       |                                                      |                                                     |  |  |  |
| Total (95% CI)                    |            |                      | 83              |           |         | 78                   | 100.0%                | -4.38 [-5.90, -2.86]                                 | •                                                   |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; CI | hi²= 0               | 70, df          | 2 (P =    | 0.70);  | $I^2 = 0\%$          |                       |                                                      | -10 -5 0 5 10                                       |  |  |  |
| Test for overall effect:          | Z = 5.64   | (P < 0               | 0.0000          | )         |         |                      |                       |                                                      | -10 -5 0 5 10<br>Favours ivabradine Favours control |  |  |  |
| Test for subgroup diff            | ferences   | : Chi <sup>z</sup> : | = 0.65.         | df = 1 (i | P = 0.4 | 2), l <sup>2</sup> = | 0%                    |                                                      | 1 avours (vabraume   avours control                 |  |  |  |

Figure 38 – Forest plot of the subgroup analyses of trials administering ivabradine at or above median duration (90.66 days) compared to trials administering ivabradine below median duration on quality of life using the MLWHFQ.

## **Supplement 8 - Cardiovascular mortality** *Main analyses*

|                                   | lvabrad    | line         | Conti         | rol     |                         | Risk Ratio          | Risk Ratio                         |
|-----------------------------------|------------|--------------|---------------|---------|-------------------------|---------------------|------------------------------------|
| Study or Subgroup                 | Events     | Total        | <b>Events</b> | Total   | Weight                  | M-H, Random, 95% CI | M-H, Random, 95% CI                |
| Abdel-Salam 2015                  | 1          | 20           | 1             | 23      | 0.0%                    | 1.15 [0.08, 17.22]  |                                    |
| BEAUTIFUL 2008                    | 469        | 5479         | 435           | 5438    | 49.1%                   | 1.07 [0.94, 1.21]   | +                                  |
| Cao 2019                          | 4          | 41           | 12            | 41      | 0.0%                    | 0.33 [0.12, 0.95]   |                                    |
| EDIFY 2017                        | 2          | 94           | 0             | 84      | 0.0%                    | 4.47 [0.22, 91.88]  |                                    |
| Hu 2018                           | 1          | 85           | 4             | 84      | 0.0%                    | 0.25 [0.03, 2.16]   |                                    |
| Mansour 2011                      | 2          | 27           | 3             | 23      | 0.0%                    | 0.57 [0.10, 3.11]   |                                    |
| Moiseev 2011                      | 2          | 26           | 4             | 23      | 0.0%                    | 0.44 [0.09, 2.20]   |                                    |
| Raja 2017                         | 1          | 63           | 0             | 62      | 0.0%                    | 2.95 [0.12, 71.13]  |                                    |
| SHIFT 2010                        | 449        | 3241         | 491           | 3264    | 50.9%                   | 0.92 [0.82, 1.04]   | <del></del>                        |
| Tarlovskaya 2011                  | 2          | 8            | 0             | 10      | 0.0%                    | 6.11 [0.33, 111.71] |                                    |
| Tsutsui 2019                      | 7          | 127          | 8             | 127     | 0.0%                    | 0.88 [0.33, 2.34]   |                                    |
| Wang GK 2020                      | 1          | 36           | 1             | 36      | 0.0%                    | 1.00 [0.07, 15.38]  |                                    |
| Wang Q 2017                       | 1          | 56           | 1             | 57      | 0.0%                    | 1.02 [0.07, 15.88]  |                                    |
| Wang RM 2017                      | 0          | 39           | 3             | 39      | 0.0%                    | 0.14 [0.01, 2.68]   |                                    |
| Zhang 2020                        | 0          | 43           | 1             | 42      | 0.0%                    | 0.33 [0.01, 7.78]   |                                    |
| Total (95% CI)                    |            | 8720         |               | 8702    | 100.0%                  | 0.99 [0.86, 1.15]   | <b>*</b>                           |
| Total events                      | 918        |              | 926           |         |                         |                     |                                    |
| Heterogeneity: Tau <sup>2</sup> = | 0.01; Chi  | $i^2 = 2.93$ | 2, df = 1 (   | P = 0.0 | 9); I <sup>z</sup> = 66 | % -                 | 05 07 1 15 2                       |
| Test for overall effect:          | Z = 0.12 ( | (P = 0.9)    | 1)            |         |                         |                     | Favours ivabradine Favours control |

Figure 39 – Forest plot of the meta-analysis of cardiovascular mortality using random-effects meta-analysis including only trials at low risk of bias. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).

|                                                                                                    | lvabrad          | dine                                          | Cont                                               | rol                                 |                              | Risk Ratio                                                                         | Risk Ratio                                         |
|----------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|----------------------------------------------------|-------------------------------------|------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|
| Study or Subgroup                                                                                  | Events           | Total                                         | <b>Events</b>                                      | Total                               | Weight                       | M-H, Fixed, 95% CI                                                                 | M-H, Fixed, 95% CI                                 |
| Abdel-Salam 2015                                                                                   | 1                | 20                                            | 1                                                  | 23                                  | 0.0%                         | 1.15 [0.08, 17.22]                                                                 |                                                    |
| BEAUTIFUL 2008                                                                                     | 469              | 5479                                          | 435                                                | 5438                                | 47.2%                        | 1.07 [0.94, 1.21]                                                                  | <del> </del>                                       |
| Cao 2019                                                                                           | 4                | 41                                            | 12                                                 | 41                                  | 0.0%                         | 0.33 [0.12, 0.95]                                                                  |                                                    |
| EDIFY 2017                                                                                         | 2                | 94                                            | 0                                                  | 84                                  | 0.0%                         | 4.47 [0.22, 91.88]                                                                 |                                                    |
| Hu 2018                                                                                            | 1                | 85                                            | 4                                                  | 84                                  | 0.0%                         | 0.25 [0.03, 2.16]                                                                  |                                                    |
| Mansour 2011                                                                                       | 2                | 27                                            | 3                                                  | 23                                  | 0.0%                         | 0.57 [0.10, 3.11]                                                                  |                                                    |
| Moiseev 2011                                                                                       | 2                | 26                                            | 4                                                  | 23                                  | 0.0%                         | 0.44 [0.09, 2.20]                                                                  |                                                    |
| Raja 2017                                                                                          | 1                | 63                                            | 0                                                  | 62                                  | 0.0%                         | 2.95 [0.12, 71.13]                                                                 |                                                    |
| SHIFT 2010                                                                                         | 449              | 3241                                          | 491                                                | 3264                                | 52.8%                        | 0.92 [0.82, 1.04]                                                                  | <del></del>                                        |
| Tarlovskaya 2011                                                                                   | 2                | 8                                             | 0                                                  | 10                                  | 0.0%                         | 6.11 [0.33, 111.71]                                                                |                                                    |
| Tsutsui 2019                                                                                       | 7                | 127                                           | 8                                                  | 127                                 | 0.0%                         | 0.88 [0.33, 2.34]                                                                  |                                                    |
| Wang GK 2020                                                                                       | 1                | 36                                            | 1                                                  | 36                                  | 0.0%                         | 1.00 [0.07, 15.38]                                                                 |                                                    |
| Wang Q 2017                                                                                        | 1                | 56                                            | 1                                                  | 57                                  | 0.0%                         | 1.02 [0.07, 15.88]                                                                 |                                                    |
| Wang RM 2017                                                                                       | 0                | 39                                            | 3                                                  | 39                                  | 0.0%                         | 0.14 [0.01, 2.68]                                                                  |                                                    |
| Zhang 2020                                                                                         | 0                | 43                                            | 1                                                  | 42                                  | 0.0%                         | 0.33 [0.01, 7.78]                                                                  |                                                    |
| Total (95% CI)                                                                                     |                  | 8720                                          |                                                    | 8702                                | 100.0%                       | 0.99 [0.91, 1.08]                                                                  | <b>+</b>                                           |
| Total events                                                                                       | 918              |                                               | 926                                                |                                     |                              |                                                                                    |                                                    |
| Heterogeneity: Chi <sup>2</sup> =                                                                  | 2.92, df=        | 1 (P=                                         | 0.09); l² =                                        | = 66%                               |                              |                                                                                    |                                                    |
| Test for overall effect:                                                                           | Z = 0.20 (       | (P = 0.8)                                     | 4)                                                 |                                     |                              |                                                                                    |                                                    |
| Wang GK 2020 Wang Q 2017 Wang RM 2017 Zhang 2020 Total (95% CI) Total events Heterogeneity: Chi² = | 918<br>2.92, df= | 36<br>56<br>39<br>43<br><b>8720</b><br>1 (P = | 1<br>1<br>3<br>1<br>926<br>0.09);   <sup>2</sup> = | 36<br>57<br>39<br>42<br><b>8702</b> | 0.0%<br>0.0%<br>0.0%<br>0.0% | 1.00 [0.07, 15.38]<br>1.02 [0.07, 15.88]<br>0.14 [0.01, 2.68]<br>0.33 [0.01, 7.78] | 0.5 0.7 1 1.5 2 Favours ivabradine Favours control |

Figure 40 – Forest plot of the meta-analysis of cardiovascular mortality using fixed-effect meta-analysis including only trials at low risk of bias. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).

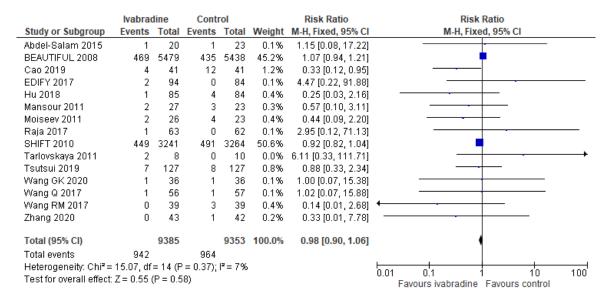
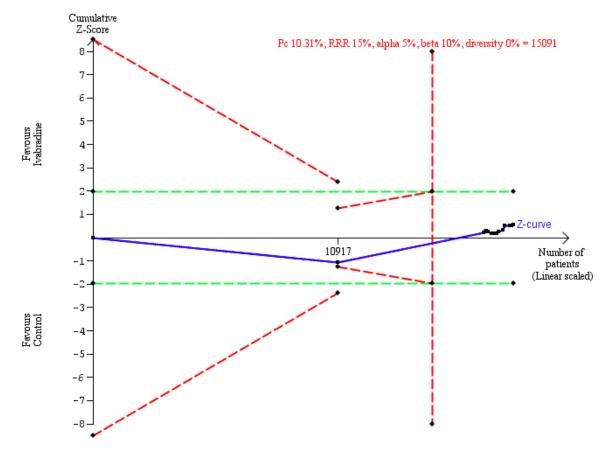




Figure 41 – Forest plot of the meta-analysis of cardiovascular mortality using fixed-effect meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).

|              |              | Ivabra     | line         | Contr      | rol       |            | Risk Ratio          |          | Risk Ratio                                     |   |
|--------------|--------------|------------|--------------|------------|-----------|------------|---------------------|----------|------------------------------------------------|---|
| Study or Su  | bgroup       | Events     | Total        | Events     | Total     | Weight     | M-H, Random, 95% CI |          | M-H, Random, 95% CI                            |   |
| Abdel-Salar  | n 2015       | 1          | 20           | 1          | 23        | 0.2%       | 1.15 [0.08, 17.22]  |          | <del></del>                                    |   |
| BEAUTIFUL    | 2008         | 469        | 5479         | 435        | 5438      | 46.1%      | 1.07 [0.94, 1.21]   |          | •                                              |   |
| Cao 2019     |              | 4          | 41           | 12         | 41        | 1.3%       | 0.33 [0.12, 0.95]   |          | <del></del>                                    |   |
| EDIFY 2017   |              | 2          | 94           | 0          | 84        | 0.2%       | 4.47 [0.22, 91.88]  |          |                                                | - |
| Hu 2018      |              | 1          | 85           | 4          | 84        | 0.3%       | 0.25 [0.03, 2.16]   |          | <del></del>                                    |   |
| Mansour 20   | 11           | 2          | 27           | 3          | 23        | 0.5%       | 0.57 [0.10, 3.11]   |          |                                                |   |
| Moiseev 201  | 11           | 2          | 26           | 4          | 23        | 0.5%       | 0.44 [0.09, 2.20]   |          |                                                |   |
| Raja 2017    |              | 1          | 63           | 0          | 62        | 0.1%       | 2.95 [0.12, 71.13]  |          |                                                |   |
| SHIFT 2010   |              | 449        | 3241         | 491        | 3264      | 48.6%      | 0.92 [0.82, 1.04]   |          | •                                              |   |
| Tarlovskaya  | 2011         | 2          | 8            | 0          | 10        | 0.2%       | 6.11 [0.33, 111.71] |          | •                                              | + |
| Tsutsui 201  | 9            | 7          | 127          | 8          | 127       | 1.4%       | 0.88 [0.33, 2.34]   |          |                                                |   |
| Wang GK 2    | 020          | 1          | 36           | 1          | 36        | 0.2%       | 1.00 [0.07, 15.38]  |          |                                                |   |
| Wang Q 201   | 17           | 1          | 56           | 1          | 57        | 0.2%       | 1.02 [0.07, 15.88]  |          |                                                |   |
| Wang RM 2    | 017          | 0          | 39           | 3          | 39        | 0.2%       | 0.14 [0.01, 2.68]   | <b>←</b> | •                                              |   |
| Zhang 2020   | 1            | 0          | 43           | 1          | 42        | 0.1%       | 0.33 [0.01, 7.78]   | _        | •                                              |   |
| Total (95% ( | CI)          |            | 9385         |            | 9353      | 100.0%     | 0.97 [0.86, 1.09]   |          | •                                              |   |
| Total events | ;            | 942        |              | 964        |           |            |                     |          |                                                |   |
| Heterogene   | ity: Tau² =  | 0.00; Chi  | $i^2 = 15.0$ | 07, df = 1 | 4 (P = 0) | 0.37); (2= | 7%                  | 0.01     | 01 1 10 10                                     | 7 |
| Test for ove | rall effect: | Z = 0.56 ( | (P = 0.5)    | 8)         |           |            |                     | 0.01     | 0.1 1 10 10 Favours ivabradine Favours control | U |
|              |              |            |              |            |           |            |                     |          | i avouis ivabiladine i avouis control          |   |

Figure 42 - Forest plot of the meta-analysis of cardiovascular mortality using random-effects meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).



**Figure 43 - Trial Sequential Analysis graph of cardiovascular mortality.** Trial Sequential Analysis showed that we had enough information to reject a relative risk reduction of 15% or more by ivabradine versus control (placebo or no intervention). The cumulative z-curve (the blue line) breaches the boundary of futility and the required information size. Pc: prevalence in control group; RRR: relative risk ratio.

#### Sensitivity analyses

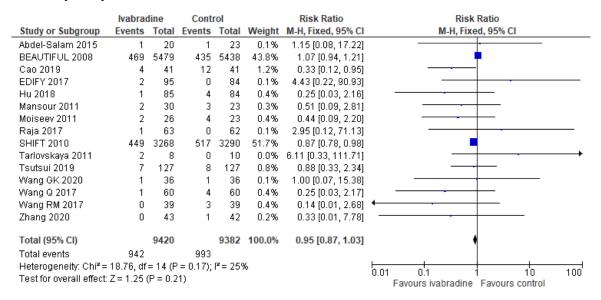



Figure 44 - Forest plot of the sensitivity analysis of cardiovascular mortality using best- compared with worst-case scenario.

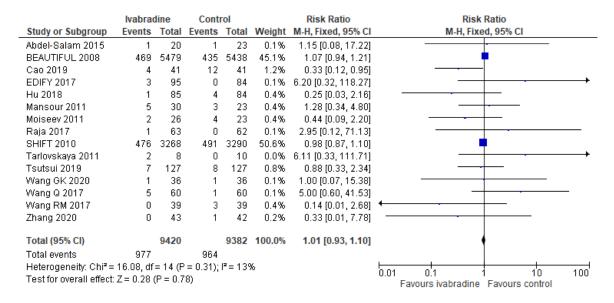



Figure 45 - Forest plot of the sensitivity analysis of cardiovascular mortality using worst compared with best-case scenario.

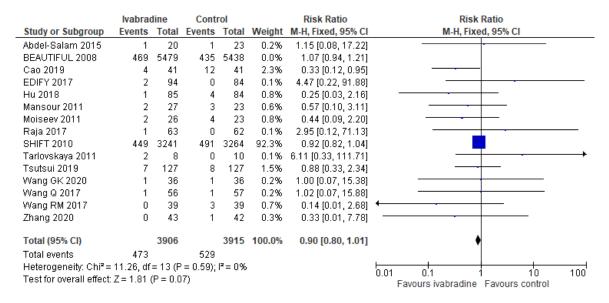



Figure 46 - Forest plot of the sensitivity analysis of cardiovascular mortality removing the BEAUTIFUL trial.

|                                   | Ivabra    | dine      | Cont     | rol                 |        | Risk Ratio          |          | Risk Ratio                         |                   |
|-----------------------------------|-----------|-----------|----------|---------------------|--------|---------------------|----------|------------------------------------|-------------------|
| Study or Subgroup                 | Events    | Total     | Events   | Total               | Weight | M-H, Fixed, 95% CI  |          | M-H, Fixed, 95% CI                 |                   |
| Abdel-Salam 2015                  | 1         | 20        | 1        | 23                  | 0.2%   | 1.15 [0.08, 17.22]  |          | <u>-</u>                           |                   |
| BEAUTIFUL 2008                    | 469       | 5479      | 435      | 5438                | 91.4%  | 1.07 [0.94, 1.21]   |          |                                    |                   |
| Cao 2019                          | 4         | 41        | 12       | 41                  | 2.5%   | 0.33 [0.12, 0.95]   |          | <del></del>                        |                   |
| EDIFY 2017                        | 2         | 94        | 0        | 84                  | 0.1%   | 4.47 [0.22, 91.88]  |          | <del> </del>                       |                   |
| Hu 2018                           | 1         | 85        | 4        | 84                  | 0.8%   | 0.25 [0.03, 2.16]   |          | -                                  |                   |
| Mansour 2011                      | 2         | 27        | 3        | 23                  | 0.7%   | 0.57 [0.10, 3.11]   |          | <del></del>                        |                   |
| Moiseev 2011                      | 2         | 26        | 4        | 23                  | 0.9%   | 0.44 [0.09, 2.20]   |          | <del></del>                        |                   |
| Raja 2017                         | 1         | 63        | 0        | 62                  | 0.1%   | 2.95 [0.12, 71.13]  |          | -                                  |                   |
| SHIFT 2010                        | 449       | 3241      | 491      | 3264                | 0.0%   | 0.92 [0.82, 1.04]   |          |                                    |                   |
| Tarlovskaya 2011                  | 2         | 8         | 0        | 10                  | 0.1%   | 6.11 [0.33, 111.71] |          | <del> </del>                       | $\longrightarrow$ |
| Tsutsui 2019                      | 7         | 127       | 8        | 127                 | 1.7%   | 0.88 [0.33, 2.34]   |          |                                    |                   |
| Wang GK 2020                      | 1         | 36        | 1        | 36                  | 0.2%   | 1.00 [0.07, 15.38]  |          |                                    |                   |
| Wang Q 2017                       | 1         | 56        | 1        | 57                  | 0.2%   | 1.02 [0.07, 15.88]  |          |                                    |                   |
| Wang RM 2017                      | 0         | 39        | 3        | 39                  | 0.7%   | 0.14 [0.01, 2.68]   | <b>—</b> | •                                  |                   |
| Zhang 2020                        | 0         | 43        | 1        | 42                  | 0.3%   | 0.33 [0.01, 7.78]   | _        | •                                  |                   |
| Total (95% CI)                    |           | 6144      |          | 6089                | 100.0% | 1.03 [0.92, 1.17]   |          | <b>•</b>                           |                   |
| Total events                      | 493       |           | 473      |                     |        |                     |          |                                    |                   |
| Heterogeneity: Chi <sup>2</sup> = | 13.16, df | = 13 (P   | = 0.44); | l <sup>2</sup> = 1% |        |                     |          | 0.1 1 10                           | 400               |
| Test for overall effect:          | Z = 0.54  | (P = 0.5) | i9)      |                     |        |                     | 0.01     | Favours ivabradine Favours control | 100               |
|                                   |           | -         |          |                     |        |                     |          | ravours ivabraume Favours control  |                   |

Figure 47 – Forest plot of the sensitivity analysis of cardiovascular mortality removing the SHIFT trial.

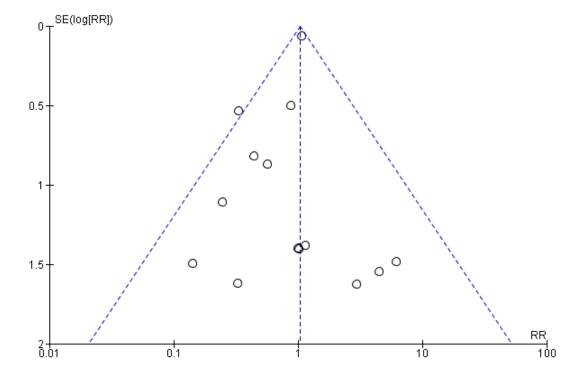



Figure 48 – Funnel plot of the analysis of cardiovascular mortality. The funnel plot did not indicate small study bias.

### **Supplement 9 - Myocardial infarction**

#### Main analyses

|   |                            | lvabrad    | line      | Contr       | rol   |        | Risk Ratio          | Risk Ratio                                              |
|---|----------------------------|------------|-----------|-------------|-------|--------|---------------------|---------------------------------------------------------|
| _ | Study or Subgroup          | Events     | Total     | Events      | Total | Weight | M-H, Fixed, 95% CI  | M-H, Fixed, 95% CI                                      |
|   | Babushkina 2020            | 0          | 56        | 3           | 53    | 0.0%   | 0.14 [0.01, 2.56]   |                                                         |
|   | BEAUTIFUL 2008             | 82         | 5477      | 88          | 5430  | 62.2%  | 0.92 [0.69, 1.25]   | #                                                       |
|   | EDIFY 2017                 | 2          | 94        | 0           | 84    | 0.0%   | 4.47 [0.22, 91.88]  |                                                         |
|   | Liu YY 2020                | 4          | 61        | 5           | 61    | 0.0%   | 0.80 [0.23, 2.84]   |                                                         |
|   | Moiseev 2011               | 2          | 26        | 3           | 23    | 0.0%   | 0.59 [0.11, 3.22]   |                                                         |
|   | SHIFT 2010                 | 62         | 3232      | 54          | 3260  | 37.8%  | 1.16 [0.81, 1.66]   | <del>*</del>                                            |
|   | Tarlovskaya 2011           | 2          | 8         | 0           | 10    | 0.0%   | 6.11 [0.33, 111.71] |                                                         |
|   | Tsutsui 2019               | 2          | 127       | 1           | 127   | 0.0%   | 2.00 [0.18, 21.78]  |                                                         |
|   | Tsutsui 5mg 2016           | 0          | 40        | 1           | 21    | 0.0%   | 0.18 [0.01, 4.21]   |                                                         |
|   | Total (95% CI)             |            | 8709      |             | 8690  | 100.0% | 1.01 [0.80, 1.27]   | <b>•</b>                                                |
|   | Total events               | 144        |           | 142         |       |        |                     |                                                         |
|   | Heterogeneity: Chi² = I    | 0.89, df=  | 1 (P =    | 0.34); l² = | - 0%  |        |                     | 0.01 0.1 1 10 100                                       |
|   | Test for overall effect: . | Z = 0.11 ( | (P = 0.9) | 2)          |       |        |                     | 0.01 0.1 1 10 100<br>Favours ivabradine Favours control |
|   |                            |            |           |             |       |        |                     | Tavours Ivabradine Tavours Control                      |

Figure 49 – Forest plot of the meta-analysis of myocardial infarction using fixed-effect meta-analysis including only trial results at low risk of bias. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).

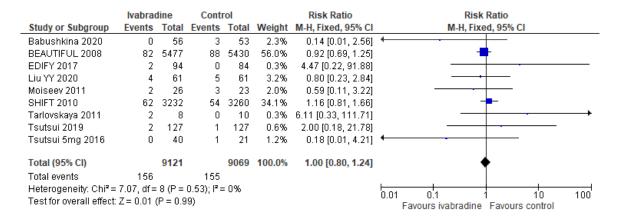



Figure 50 - Forest plot of the meta-analysis of myocardial infarction using fixed-effect meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).

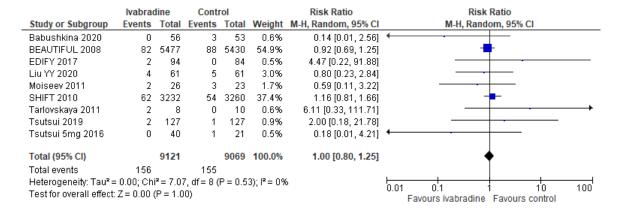
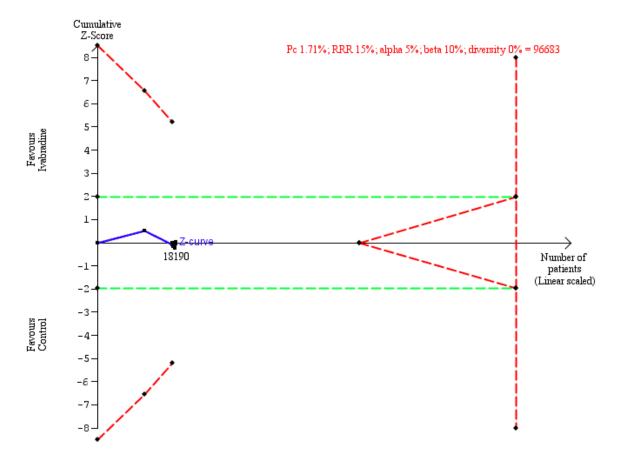




Figure 51 - Forest plot of the meta-analysis of myocardial infarction using random-effects meta-analysis. The meta-analysis showed no evidence of a difference between ivabradine versus control (placebo or no intervention).



**Figure 52 - Trial Sequential Analysis graph of myocardial infarction.** Trial Sequential Analysis showed that we did not have enough information to detect or reject a relative risk reduction of 15% or more by ivabradine versus control (placebo or no intervention). The cumulative z-curve (the blue line) does not breach any boundaries. Pc: prevalence in control group; RRR: relative risk ratio.

#### Sensitivity analyses

| lvabrad    | line                                                  | Contr                                                                     | rol                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|-------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Events     | Total                                                 | Events                                                                    | Total                                                                                                                                                                                                                                                                                                                                                                          | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0          | 56                                                    | 3                                                                         | 53                                                                                                                                                                                                                                                                                                                                                                             | 1.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14 [0.01, 2.56]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 82         | 5479                                                  | 96                                                                        | 5438                                                                                                                                                                                                                                                                                                                                                                           | 49.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.85 [0.63, 1.14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2          | 95                                                    | 0                                                                         | 84                                                                                                                                                                                                                                                                                                                                                                             | 0.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.43 [0.22, 90.93]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4          | 61                                                    | 5                                                                         | 61                                                                                                                                                                                                                                                                                                                                                                             | 2.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.80 [0.23, 2.84]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2          | 26                                                    | 3                                                                         | 23                                                                                                                                                                                                                                                                                                                                                                             | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.59 [0.11, 3.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 62         | 3268                                                  | 84                                                                        | 3290                                                                                                                                                                                                                                                                                                                                                                           | 42.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.74 [0.54, 1.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2          | 8                                                     | 0                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                             | 0.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.11 [0.33, 111.71]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2          | 127                                                   | 1                                                                         | 127                                                                                                                                                                                                                                                                                                                                                                            | 0.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.00 [0.18, 21.78]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0          | 42                                                    | 1                                                                         | 21                                                                                                                                                                                                                                                                                                                                                                             | 1.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17 [0.01, 4.02]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 9162                                                  |                                                                           | 9107                                                                                                                                                                                                                                                                                                                                                                           | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81 [0.65, 0.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 156        |                                                       | 193                                                                       |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6.47, df=  | 8 (P =                                                | 0.59); l² =                                                               | - 0%                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 0.1 1 10 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Z = 2.05 ( | (P = 0.0)                                             | 4)                                                                        |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01 0.1 1 10 100 Favours ivabradine Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 82<br>2<br>4<br>2<br>62<br>2<br>0<br>156<br>6.47, df= | 0 56 82 5479 2 95 4 61 2 26 62 3268 2 8 2 127 0 42  156 6.47, df = 8 (P = | Events         Total         Events           0         56         3           82         5479         96           2         95         0           4         61         5           2         26         3           62         3268         84           2         8         0           2         127         1           0         42         1           156         193 | Events         Total         Events         Total           0         56         3         53           82         5479         96         5438           2         95         0         84           4         61         5         61           2         26         3         23           62         3268         84         3290           2         8         0         10           2         127         1         127           0         42         1         21           9107           156         193         6.47, df = 8 (P = 0.59);  * = 0% | Events         Total         Events         Total         Weight           0         56         3         53         1.8%           82         5479         96         5438         49.2%           2         95         0         84         0.3%           4         61         5         61         2.6%           2         26         3         23         1.6%           62         3268         84         3290         42.8%           2         8         0         10         0.2%           2         127         1         127         0.5%           0         42         1         21         1.0%           9162         9107         100.0%           156         193           6.47, df = 8 (P = 0.59); P = 0%         8         15         10 | Events         Total         Events         Total         Weight         M-H, Fixed, 95% CI           0         56         3         53         1.8%         0.14 [0.01, 2.56]           82         5479         96         5438         49.2%         0.85 [0.63, 1.14]           2         95         0         84         0.3%         4.43 [0.22, 90.93]           4         61         5         61         2.6%         0.80 [0.23, 2.84]           2         26         3         23         1.6%         0.59 [0.11, 3.22]           62         3268         84         3290         42.8%         0.74 [0.54, 1.03]           2         8         0         10         0.2%         6.11 [0.33, 111.71]           2         127         1         127         0.5%         2.00 [0.18, 21.78]           0         42         1         21         1.0%         0.17 [0.01, 4.02]           9162         9107         100.0%         0.81 [0.65, 0.99]           156         193         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00< |

Figure 53 - Forest plot of the sensitivity analysis of myocardial infarction using a best- compared with worst-case scenario.

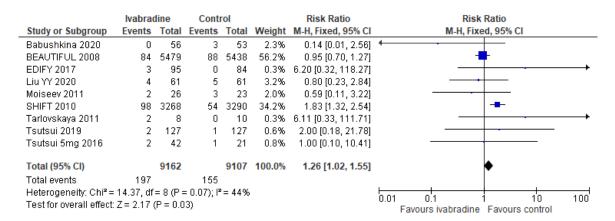
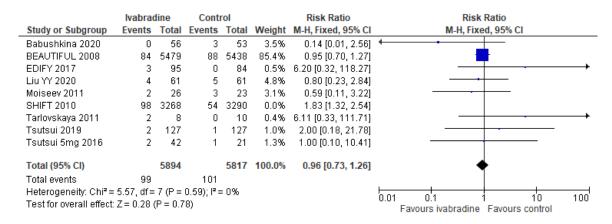




Figure 54 - Forest plot of the sensitivity analysis of myocardial infarction using a worst- compared with best-case scenario.

|                    |                                                                          |                                                                                                                                                  | Risk Ratio                                                                                                                                                                                            | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| otal Events        | Total                                                                    | Weight                                                                                                                                           | M-H, Fixed, 95% CI                                                                                                                                                                                    | M-H, Fixed, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 56 3               | 53                                                                       | 5.2%                                                                                                                                             | 0.14 [0.01, 2.56]                                                                                                                                                                                     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 179 88             | 5438                                                                     | 0.0%                                                                                                                                             | 0.95 [0.70, 1.27]                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 95 0               | 84                                                                       | 0.8%                                                                                                                                             | 6.20 [0.32, 118.27]                                                                                                                                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 61 5               | 61                                                                       | 7.3%                                                                                                                                             | 0.80 [0.23, 2.84]                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 26 3               | 23                                                                       | 4.6%                                                                                                                                             | 0.59 [0.11, 3.22]                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 268 54             | 3290                                                                     | 78.1%                                                                                                                                            | 1.83 [1.32, 2.54]                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8 0                | 10                                                                       | 0.7%                                                                                                                                             | 6.11 [0.33, 111.71]                                                                                                                                                                                   | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27 1               | 127                                                                      | 1.5%                                                                                                                                             | 2.00 [0.18, 21.78]                                                                                                                                                                                    | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 42 1               | 21                                                                       | 1.9%                                                                                                                                             | 1.00 [0.10, 10.41]                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 883                | 3669                                                                     | 100.0%                                                                                                                                           | 1.66 [1.23, 2.22]                                                                                                                                                                                     | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 67                 |                                                                          |                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $P = 0.37); I^2 =$ | = 7%                                                                     |                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.0008)            |                                                                          |                                                                                                                                                  |                                                                                                                                                                                                       | 0.01 0.1 1 10 100 Favours ivabradine Favours control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 1 (              | 56 3<br>479 88<br>95 0<br>61 5<br>26 3<br>268 54<br>8 0<br>127 1<br>42 1 | 56 3 53<br>479 88 5438<br>95 0 84<br>61 5 61<br>26 3 23<br>268 54 3290<br>8 0 10<br>127 1 127<br>42 1 21<br>683 3669<br>67<br>(P = 0.37); P = 7% | 56 3 53 5.2%<br>479 88 5438 0.0%<br>95 0 84 0.8%<br>61 5 61 7.3%<br>26 3 23 4.6%<br>268 54 3290 78.1%<br>8 0 10 0.7%<br>127 1 127 1.5%<br>42 1 21 1.9%<br>683 3669 100.0%<br>67<br>(P = 0.37); F = 7% | 56         3         53         5.2%         0.14 [0.01, 2.56]           479         88         5438         0.0%         0.95 [0.70, 1.27]           95         0         84         0.8%         6.20 [0.32, 118.27]           61         5         61         7.3%         0.80 [0.23, 2.84]           26         3         23         4.6%         0.59 [0.11, 3.22]           268         54         3290         78.1%         1.83 [1.32, 2.54]           8         0         10         0.7%         6.11 [0.33, 111.71]           127         1         127         1.5%         2.00 [0.18, 21.78]           42         1         21         1.9%         1.00 [0.10, 10.41]           683         3669         100.0%         1.66 [1.23, 2.22]           67         (P = 0.37);  F = 7% |

Figure 55 - Forest plot of the sensitivity analysis of myocardial infarction removing the BEAUTIFUL trial.



 $Figure\ 56-Forest\ plot\ of\ the\ sensitivity\ analysis\ of\ myocardial\ infarction\ removing\ the\ SHIFT\ trial.$ 

### **Supplement 10 - Non-serious adverse events** *Main analyses*

| Ctudu or Cubarous           | Ivabrao |          | Conti  |          | Moight  | Risk Ratio                     | Risk Ratio          |
|-----------------------------|---------|----------|--------|----------|---------|--------------------------------|---------------------|
| Study or Subgroup           | Events  |          |        |          | vveignt | M-H, Random, 95% CI            | M-H, Random, 95% CI |
| Abdel-Salam 2015            | 3       | 20       | 0      | 23       |         | Not estimable                  |                     |
| Bansal 2019                 | 3       | 78       | 1      | 80       |         | Not estimable                  |                     |
| BEAUTIFUL 2008              | 2570    | 5477     | 2221   | 5430     | 48.3%   | 1.15 [1.10, 1.20]              |                     |
| Cao 2019                    | 2       | 41       | 3      | 41       |         | Not estimable                  |                     |
| Cheng 2017                  | 2       | 45       | 1      | 45       |         | Not estimable                  |                     |
| Cong 2018                   | 1       | 45       | 1      | 45       |         | Not estimable                  |                     |
| Deng 2017                   | 1       | 41       | 1      | 41       |         | Not estimable                  |                     |
| Di 2020                     | 3       | 63       | 2      | 63       |         | Not estimable                  |                     |
| EDIFY 2017                  | 57      | 94       | 51     | 84       |         | Not estimable                  |                     |
| Fu 2021                     | 2       | 32       | 1      | 32       |         | Not estimable                  |                     |
| Hu 2018                     | 2       | 85       | 0      | 84       |         | Not estimable                  |                     |
| Huang J 2017                | 5       | 52       | 0      | 50       |         | Not estimable                  |                     |
| Li 2020                     | 2       | 48       | 1      | 48       |         | Not estimable                  |                     |
| Liu YY 2020                 | 3       | 61       | 4      | 61       |         | Not estimable                  |                     |
| Lu 2019                     | 1       | 30       | 0      | 30       |         | Not estimable                  |                     |
| Luo 2021                    | 4       | 60       | 3      | 60       |         | Not estimable                  |                     |
| Lu YH 2020                  | 1       | 35       | 0      | 35       |         | Not estimable                  |                     |
| Ma 2020                     | 2       | 43       | 2      | 43       |         | Not estimable                  |                     |
| Manz 2003                   | 9       | 27       | 2      | 11       |         | Not estimable                  |                     |
| Mao 2018                    | 2       | 30       | 2      | 30       |         | Not estimable                  |                     |
| Nguyen 2018                 | 5       | 14       | 0      | 5        |         | Not estimable                  |                     |
| Pan 2020                    | 2       | 25       | 1      | 25       |         | Not estimable                  |                     |
| Qi 2019                     | 0       | 48       | 2      | 48       |         | Not estimable                  |                     |
| Raja 2017                   | 2       | 63       | 0      | 62       |         | Not estimable                  |                     |
| Ballam 2016                 | 5       | 50       | 3      | 50       |         | Not estimable                  |                     |
| BHIFT 2010                  | 2694    | 3232     | 2577   | 3260     | 51.7%   | 1.05 [1.03, 1.08]              | -                   |
| Bun 2020                    | 1       | 50       | 4      | 50       |         | Not estimable                  |                     |
| Tang 2018                   | 1       | 31       | 3      | 31       |         | Not estimable                  |                     |
| Tsutsui 2.5mg 2016          | 23      | 42       | 6      | 20       |         | Not estimable                  |                     |
| Tsutsui 2019                | 119     | 127      | 116    | 127      |         | Not estimable                  |                     |
| Tsutsui 5mg 2016            | 27      | 42       | 6      | 21       |         | Not estimable                  |                     |
| Wang FC 2017                | 2       | 53       | 6      | 43       |         | Not estimable                  |                     |
| Wang JJ 2017                | 2       | 20       | 3      | 20       |         | Not estimable                  |                     |
| Wang Q 2017                 | 6       | 56       | 4      | 57       |         | Not estimable                  |                     |
| Nang RM 2017                | 3       | 39       | 3      | 39       |         | Not estimable                  |                     |
| Wei 2019                    | 1       | 32       | Ö      | 32       |         | Not estimable                  |                     |
| Kia 2016                    | 1       | 39       | 1      | 39       |         | Not estimable                  |                     |
| King 2018                   | 1       | 10       | 3      | 10       |         | Not estimable                  |                     |
| Ku 2019                     | 3       | 38       | 0      | 39       |         | Not estimable                  |                     |
| Ku 2019<br>Kue 2020         | 2       | 45       | 1      | 45       |         | Not estimable                  |                     |
| rang WT 2019                | 1       | 40       | Ö      | 40       |         | Not estimable                  |                     |
| rang 🗤 2019<br>Yu 2018      | 1       | 10       | 3      | 10       |         | Not estimable                  |                     |
| ru 2016<br>Yue 2016         | 2       | 43       | 1      | 43       |         | Not estimable                  |                     |
| zue 2016<br>Zeng FC 2019    | 0       | 33       | 1      | 32       |         | Not estimable                  |                     |
| -                           | 3       | 33<br>45 | 4      | 32<br>45 |         |                                |                     |
| Zeng XM 2019<br>Zhang 2020  |         |          |        |          |         | Not estimable                  |                     |
| Zhang 2020<br>Zhang 2021    | 2       | 43       | 6      | 42       |         | Not estimable                  |                     |
| Zhang 2021<br>Zhang VI 2010 | 1       | 47       | 2      | 47       |         | Not estimable                  |                     |
| Zhang XJ 2019               | 1       | 55       | 1      | 55       |         | Not estimable                  |                     |
| Zhou 2019<br>Zhou 2020      | 3<br>2  | 43<br>30 | 2<br>5 | 30<br>43 |         | Not estimable<br>Not estimable |                     |
| Zhou 2020                   | 2       | 43       | 5      | 43       |         | NUL ESTIMADIE                  |                     |
| Total (95% CI)              |         | 8709     |        | 8690     | 100.0%  | 1.10 [1.00, 1.21]              |                     |
| Total events                | 5264    |          | 4798   |          |         |                                |                     |
|                             |         |          |        |          |         |                                |                     |

Figure 57 – Forest plot of the meta-analysis of non-serious adverse events using random-effects meta-analysis including only trials at low risk of bias. The meta-analysis showed evidence of a harmful effect of ivabradine versus control (placebo or no intervention)

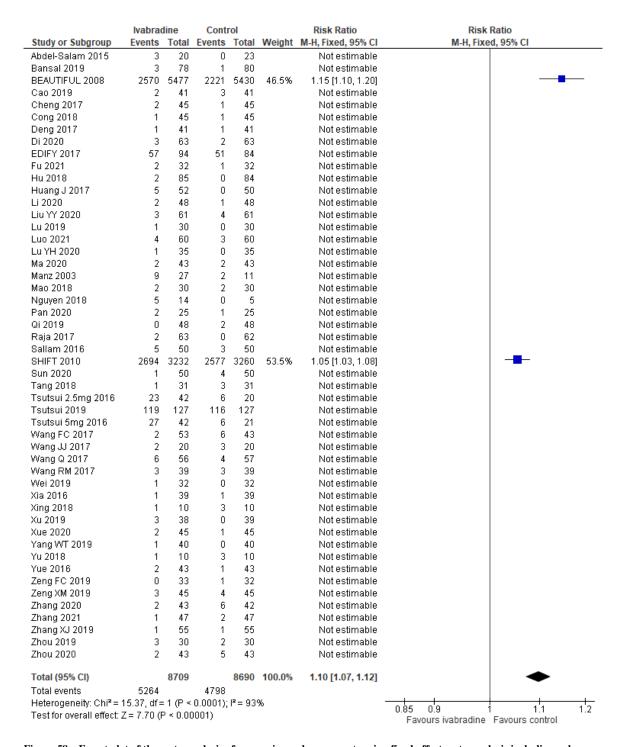



Figure 58 – Forest plot of the meta-analysis of non-serious adverse events using fixed-effect meta-analysis including only trials at low risk of bias. The meta-analysis showed evidence of a harmful effect of ivabradine versus control (placebo or no intervention).

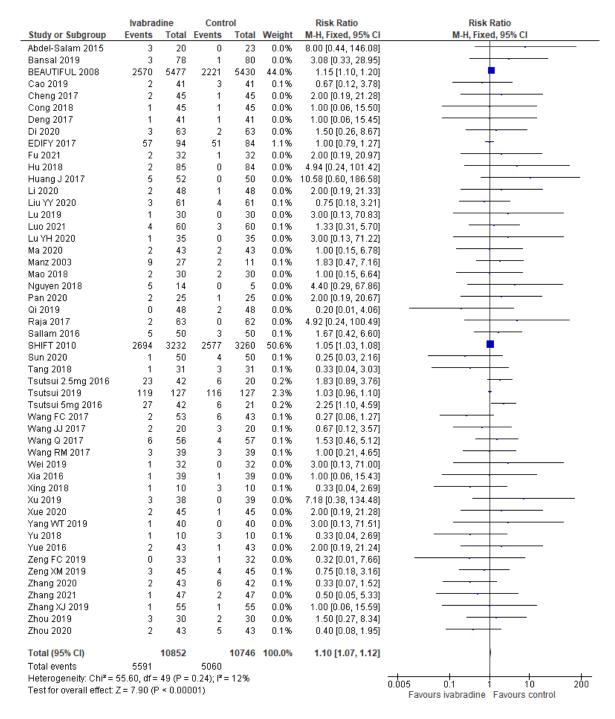



Figure 59 - Forest plot of the meta-analysis of non-serious adverse events using fixed-effect meta-analysis. The meta-analysis showed evidence of a harmful effect of ivabradine versus control (placebo or no intervention).

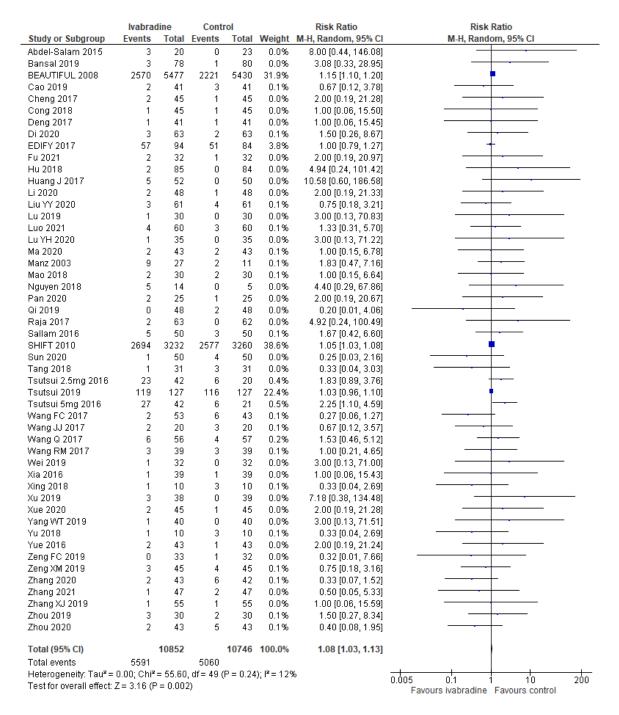
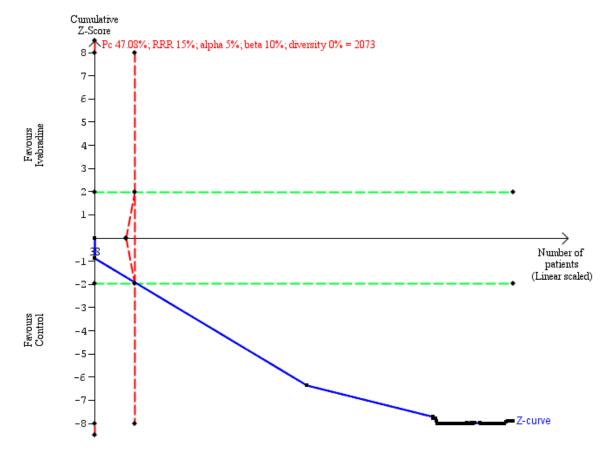




Figure 60 - Forest plot of the meta-analysis of non-serious adverse events using random-effects meta-analysis. The meta-analysis showed evidence of a harmful effect of ivabradine versus control (placebo or no intervention)



**Figure 61** – **Trial Sequential Analysis graph of non-serious adverse events.** Trial Sequential Analysis showed that we had enough information to detect a relative risk increase of 10% by ivabradine versus control (placebo or no intervention). The cumulative z-curve (the blue line) reached the required information size and crossed the conventional boundary of statistical significance. Pc: prevalence in control group; RRR: relative risk ratio.

#### Sensitivity analyses




Figure 62 - Forest plot of the meta-analysis of non-serious adverse events using a best- compared with worst-case scenario.

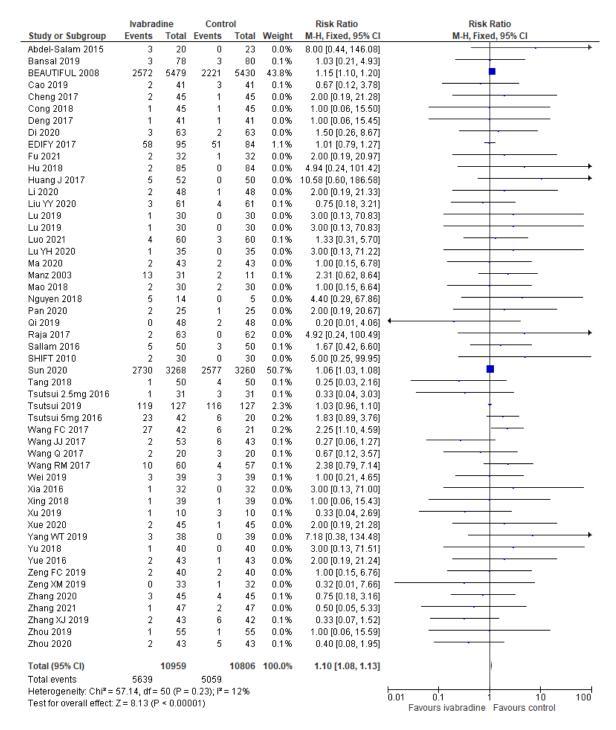



Figure 63 - Forest plot of the meta-analysis of non-serious adverse events using a worst- compared with best-case scenario.

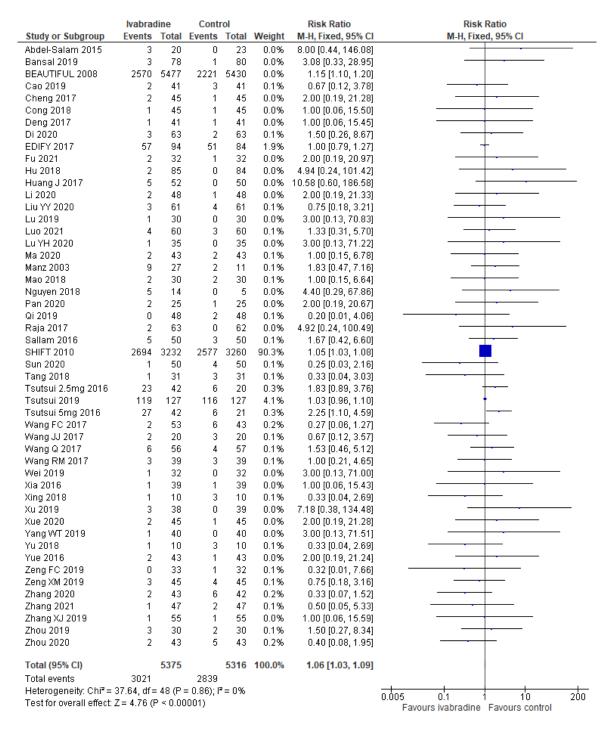



Figure 64 - Forest plot of the sensitivity analysis of non-serious adverse events removing the BEAUTIFUL trial.

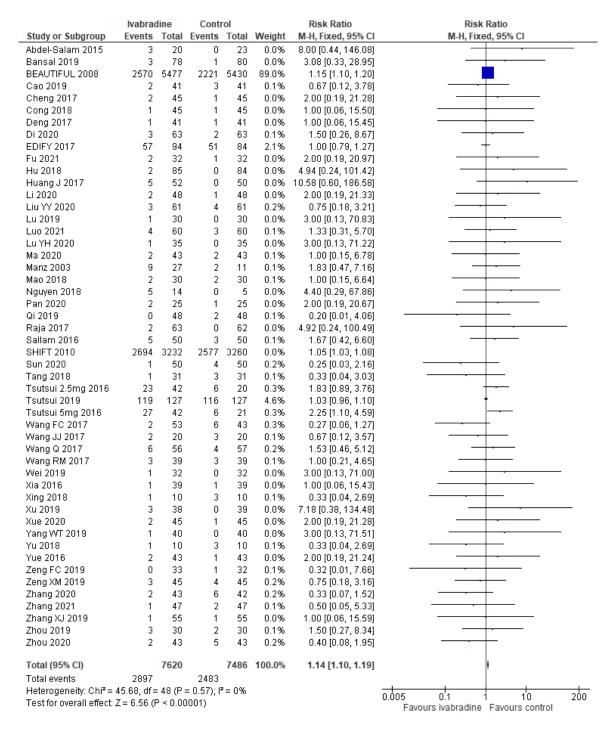



Figure 65 - Forest plot of the sensitivity analysis of non-serious adverse events removing the SHIFT trial.

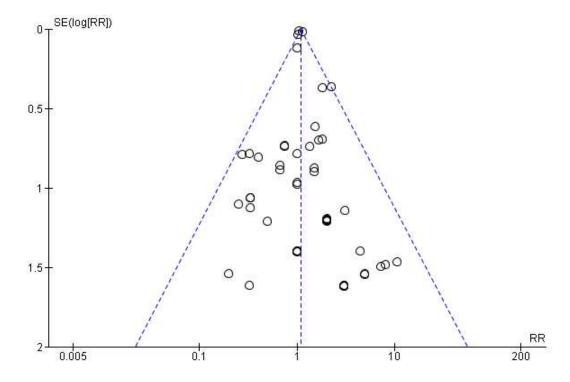



Figure 66 – Funnel plot of the analysis of non-serious adverse events. The funnel plot did not indicate small study bias.

#### Supplement 11 – Discrepancy in safety data

For serious and non-serious adverse events, there were discrepancies between the data reported in the publication in the SHIFT trial as compared to the raw data reported on ClinicalTrials.gov.

In the published article of the SHIFT trial, it was reported that 1450/3232 (44.86%) participants in the ivabradine group and 1553/3260 (47.6%) in the control group experienced one or more serious adverse events. However, in the raw data it was reported that 1369/3232 (42.4%) in the ivabradine group versus 1481/3260 (45.4%) in the control group experienced one or more serious adverse events. In our analyses, we have used the highest proportion of participants at risk.

In the published article of the SHIFT trial it was reported that 2439/3232 (75.5%) participants in the ivabradine group and 2423/3260 (74.3%) in the control group experienced one or more non-serious adverse events. However, in the raw data it was reported that 2062/3232 (63.8%) in the ivabradine group versus 2020/3260 (62.0%) in the control group experienced one or more non-serious adverse events. In our analyses, we have used the highest proportion of participants at risk. The company that developed ivabradine, Servier, has informed us that in the publication, the data given for serious and non-serious adverse events 'are given during the study' while the data on ClinicalTrials.gov 'are given on treatment'.

# **Supplement 12 – Exploratory outcomes** *Resting heart rate at follow-up*

| 0                                      |           | J      |          |           |         |           |        |                         |                                    |
|----------------------------------------|-----------|--------|----------|-----------|---------|-----------|--------|-------------------------|------------------------------------|
|                                        |           | bradin |          |           | Control |           |        | Mean Difference         | Mean Difference                    |
| Study or Subgroup                      | Mean      | SD     | Total    | Mean      |         | Total     | Weight | IV, Random, 95% CI      | IV, Random, 95% CI                 |
| Barilla 2016                           | 65.7      | 9.8    | 30       | 81.9      | 7.5     | 28        | 3.1%   | -16.20 [-20.67, -11.73] | <del></del>                        |
| Cavosoglu 2015                         | 83.5      | 12.4   | 29       | 101.7     | 16.9    | 29        | 2.6%   | -18.20 [-25.83, -10.57] |                                    |
| Chaudhari 2014                         | 70.6      | 5.06   | 78       | 91.33     | 8.9     | 80        | 3.3%   | -20.73 [-22.98, -18.48] |                                    |
| CONSTATHE-DHF 2016                     | 86        | 15     | 13       | 98        | 12      | 13        | 2.2%   | -12.00 [-22.44, -1.56]  |                                    |
| Di 2020                                | 66.64     | 4.58   | 63       | 73.75     | 6.01    | 63        | 3.3%   | -7.11 [-8.98, -5.24]    | -                                  |
| EDIFY 2017                             | -13       | 3.46   | 95       | -3.5      | 4.18    | 84        | 3.4%   | -9.50 [-10.63, -8.37]   | +                                  |
| Fu 2021                                | 63.7      | 3.9    | 32       | 67.4      | 4.2     | 32        | 3.3%   | -3.70 [-5.69, -1.71]    |                                    |
| Kosmala 2013                           | 62        | 8      | 30       | 70        | 7       | 31        | 3.2%   | -8.00 [-11.78, -4.22]   | <del></del>                        |
| Li 2020                                | 74.96     | 6.58   | 48       | 84.69     | 15.49   | 48        | 3.0%   | -9.73 [-14.49, -4.97]   | <del></del>                        |
| Liu Y 2020                             | 60.1      | 1.3    | 61       | 72.3      | 1.6     | 61        | 3.4%   | -12.20 [-12.72, -11.68] | •                                  |
| Luo 2021                               | 62.84     | 6.32   | 60       | 68.51     | 7.47    | 60        | 3.3%   | -5.67 [-8.15, -3.19]    | <del></del>                        |
| Ma 2020                                | 64.73     |        |          | 87.52     | 1.49    | 43        | 3.4%   | -22.79 [-23.35, -22.23] | •                                  |
| Mansour 2011                           | -24       | 13     | 30       | -3        | 7.7     | 23        | 2.9%   | -21.00 [-26.62, -15.38] |                                    |
| Moiseev 2011                           | 64        | 3.17   | 26       | 65        | 3.71    | 23        | 3.3%   | -1.00 [-2.95, 0.95]     | <del>-</del>                       |
| Nguyen 2018                            | 86        | 5.2    | 14       | 104       | 8.37    | 5         | 2.6%   | -18.00 [-25.83, -10.17] |                                    |
| Ordu 2015                              | 68.36     | 8.32   | 49       | 80.4      | 8.3     | 49        | 3.2%   | -12.04 [-15.33, -8.75]  |                                    |
| Pan 2020                               | 68.7      | 7.3    | 25       | 72.3      | 6.1     | 25        | 3.2%   | -3.60 [-7.33, 0.13]     | <del></del>                        |
| Raja 2017                              | 63.8      | 3.6    | 63       | 75.9      | 8.4     | 62        | 3.3%   | -12.10 [-14.37, -9.83]  | <del></del>                        |
| Sallam 2016                            | 69        | 11     | 50       | 78        | 17      | 50        | 2.9%   | -9.00 [-14.61, -3.39]   |                                    |
| Su DL 2020                             | 77.31     | 4.28   | 30       | 84.23     | 5.21    | 30        | 3.3%   | -6.92 [-9.33, -4.51]    |                                    |
| Sun 2020                               | 75        | 6      | 50       | 86        | 6       | 50        | 3.3%   | -11.00 [-13.35, -8.65]  |                                    |
| Tarlovskaya 2011                       | 67.7      |        | 8        | 77        | 10      | 10        | 2.2%   | -9.30 [-19.89, 1.29]    | <del></del>                        |
| Tsutsui 2.5mg 2016                     | 66.6      | 7.2    | 41       | 79.8      | 9.4     | 20        | 3.1%   | -13.20 [-17.87, -8.53]  | <del></del>                        |
| Tsutsui 2019                           | 66.7      | 11.4   | 127      | 76.6      | 10.7    | 127       | 3.3%   | -9.90 [-12.62, -7.18]   | <del></del>                        |
| Tsutsui 5mg 2016                       | 66.8      | 8.8    | 40       | 79.8      | 9.4     | 21        | 3.0%   | -13.00 [-17.86, -8.14]  |                                    |
| Wei 2019                               | 72.03     |        |          | 86.35     | 8.62    | 32        |        | -14.32 [-17.63, -11.01] | <del></del>                        |
| Xu 2019                                | 67.8      | 5.1    | 38       | 71.1      | 7.8     | 39        | 3.3%   | -3.30 [-6.24, -0.36]    |                                    |
| Yang WT 2019                           | 65.4      | 8.4    | 40       | 73.9      | 7.5     | 40        | 3.2%   | -8.50 [-11.99, -5.01]   | <del></del>                        |
| Yu 2019                                | 64.9      | 6.2    | 33       | 76.7      | 8.8     | 33        | 3.2%   | -11.80 [-15.47, -8.13]  |                                    |
| Zhang 2021                             | 68.32     | 3.33   |          | 74.23     | 4.02    | 47        | 3.4%   | -5.91 [-7.40, -4.42]    |                                    |
| Zhang Y 2020                           | 68        | 3      | 27       | 74        | 3       | 27        | 3.4%   | -6.00 [-7.60, -4.40]    | <del></del>                        |
| Zhou 2020                              | 70.5      | 6.3    | 43       | 85.3      | 7.6     | 43        | 3.3%   | -14.80 [-17.75, -11.85] |                                    |
| Total (95% CI)                         |           |        | 1395     |           |         | 1328      | 100.0% | -10.83 [-13.42, -8.23]  | •                                  |
| Heterogeneity: Tau <sup>2</sup> = 51.4 | l6; Chi²= | 1845   | .57, df= | = 31 (P · | < 0.000 | 01); l² = | 98%    |                         | -20 -10 0 10 20                    |
| Test for overall effect: $Z = 8$       | 3.19 (P < | 0.000  | 01)      |           |         |           |        |                         | Favours ivabradine Favours control |
|                                        |           |        |          |           |         |           |        |                         | ondordanie i drodio control        |

Figure 67 – Forest plot of the meta-analysis of resting heart rate at follow-up using random-effects meta-analysis. The meta-analysis showed that ivabradine seemed to decrease the resting heart rate at follow-up by 10.83 beats per minute at follow-up.

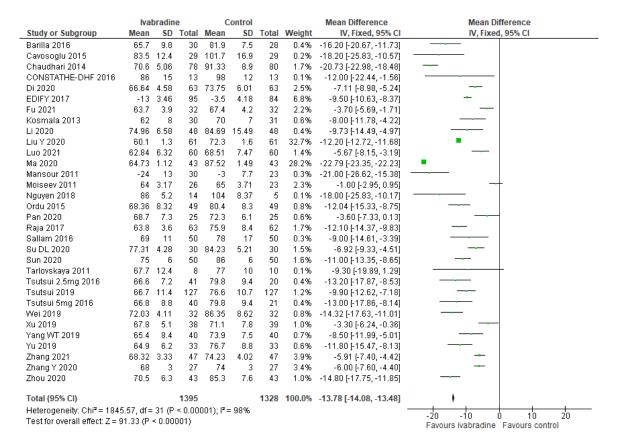
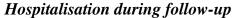



Figure 68 - Forest plot of the meta-analysis of resting heart rate at follow-up using fixed-effect meta-analysis. The meta-analysis showed that ivabradine seemed to decrease the resting heart rate at follow-up by 13.78 beats per minute at follow-up.


Left ventricular ejection fraction

| Study or Subgroup                                         | Mean           | bradine<br>SD | Total    | Mean           | ontrol<br>SD | Total    | Weight       | Mean Difference<br>IV, Random, 95% CI     | Mean Difference<br>IV, Random, 95% CI            |
|-----------------------------------------------------------|----------------|---------------|----------|----------------|--------------|----------|--------------|-------------------------------------------|--------------------------------------------------|
| Abdel-Salam 2015                                          | 39             | 7             | 20       | 33             | 10           | 23       | 1.0%         | 6.00 [0.89, 11.11]                        |                                                  |
| Bansal 2019                                               | 35             | 3.71          | 78       | 33             | 4.24         | 80       | 1.5%         | 2.00 [0.76, 3.24]                         | <del></del>                                      |
| Barilla 2016                                              | 4.1            | 2.5           | 30       | 0.8            | 1.2          | 28       | 1.5%         | 3.30 [2.30, 4.30]                         | -                                                |
| Bi 2020                                                   | 63.06          | 9.85          | 99       | 44.27          |              | 99       |              | 18.79 [16.39, 21.19]                      | _                                                |
| Cao 2019                                                  | 52.39          | 5.32          | 41       | 39.89          | 4.98         | 41       | 1.4%         | 12.50 [10.27, 14.73]                      |                                                  |
| Cavosoglu 2015                                            | 26.4           | 5.3           | 29       | 28.4           | 4.3          | 29       | 1.4%         | -2.00 [-4.48, 0.48]                       | <del></del>                                      |
| Chaudhari 2014                                            | 35<br>48.25    | 3.71<br>6.68  | 78<br>45 | 42.64          | 4.24<br>8.4  | 80<br>45 | 1.5%<br>1.3% | 2.00 [0.76, 3.24]                         | <u> </u>                                         |
| Cheng 2017<br>Chen G 2020                                 | 58.49          | 5.51          | 30       | 49.67          |              | 30       | 1.4%         | 5.61 [2.47, 8.75]<br>8.82 [6.35, 11.29]   |                                                  |
| Chen HX 2021                                              | 41.77          | 6.02          | 30       | 34.92          |              | 30       | 1.3%         | 6.85 [4.02, 9.68]                         |                                                  |
| CONSTATHE-DHF 2016                                        | 29             | 8             | 13       | 25             | 8            | 13       | 0.9%         | 4.00 [-2.15, 10.15]                       | <del></del>                                      |
| Di 2020                                                   | 49.98          | 4.98          | 63       | 44.67          | 4.5          | 63       | 1.5%         | 5.31 [3.65, 6.97]                         | <del></del>                                      |
| Fu 2021                                                   | 51.6           | 5.3           | 32       | 49             | 4.8          | 32       | 1.4%         | 2.60 [0.12, 5.08]                         | <del></del>                                      |
| Guo 2017                                                  | 42.301         | 6.358         | 16       | 32.603         | 4.7          | 16       | 1.2%         | 9.70 [5.82, 13.57]                        |                                                  |
| He 2019                                                   | 33.51          | 10.12         | 30       | 31.12          |              | 31       | 1.1%         | 2.39 [-2.52, 7.30]                        | <del></del>                                      |
| Hu 2017                                                   | 48.31          | 6.54          | 30       | 41.73          |              | 30       | 1.3%         | 6.58 [3.41, 9.75]                         |                                                  |
| Hu 2018                                                   | 39.2           | 12.1          | 85       | 38.9           | 11.2         | 84       | 1.3%         | 0.30 [-3.21, 3.81]                        | <u> </u>                                         |
| Huang J 2017<br>Kosmala 2013                              | 40<br>68       | 6<br>6        | 52<br>30 | 34<br>68       | 7<br>5       | 50<br>31 | 1.4%<br>1.4% | 6.00 [3.47, 8.53]<br>0.00 [-2.78, 2.78]   |                                                  |
| Li 2018                                                   | 52.5           | 2.5           | 45       | 41.9           | 2.6          | 44       | 1.5%         | 10.60 [9.54, 11.66]                       | <del></del>                                      |
| Li 2020                                                   | 39.84          | 3.69          | 48       | 36.26          |              | 48       | 1.5%         | 3.58 [2.32, 4.84]                         |                                                  |
| Li B 2020                                                 | 50.09          | 5.32          | 55       | 45.94          | 4.83         | 55       | 1.5%         | 4.15 [2.25, 6.05]                         | <del></del>                                      |
| Liu 2019                                                  | 57.6           | 6.7           | 48       | 47.9           | 8.7          | 48       | 1.3%         | 9.70 [6.59, 12.81]                        |                                                  |
| Liu 2020                                                  | 51.54          | 1.18          | 49       | 41.29          |              | 49       | 1.5%         | 10.25 [9.83, 10.67]                       | -                                                |
| Lu 2019                                                   | 41.27          | 4.65          | 28       | 38.1           | 4.15         | 27       | 1.4%         | 3.17 [0.84, 5.50]                         | <del></del>                                      |
| Luo 2021                                                  | 48.29          | 5.32          | 60       | 45.31          | 4.56         | 60       | 1.5%         | 2.98 [1.21, 4.75]                         |                                                  |
| Ma 2016                                                   | 36             | 3.11          | 30       | 32.3           |              | 30       | 1.5%         | 3.70 [2.16, 5.24]                         |                                                  |
| Ma 2020                                                   | 58.01          | 8.39          | 43       | 46.32          |              | 43       | 1.3%         | 11.69 [8.40, 14.98]                       |                                                  |
| Mansour 2011                                              | 6.2            | 8.3           | 27       | 1.8            | 6.7          | 23       | 1.2%         | 4.40 [0.24, 8.56]                         |                                                  |
| Manz 2003                                                 |                | 10.01         | 27       | 38.4           | 9.3          | 11       | 0.8%         | -1.20 [-7.87, 5.47]                       |                                                  |
| Mao 2018<br>Moiseev 2011                                  | 44.3<br>36.5   | 7.9<br>8.19   | 30<br>26 | 39.3<br>35.7   | 7.1<br>5.51  | 30<br>23 | 1.2%<br>1.2% | 5.00 [1.20, 8.80]<br>0.80 [-3.07, 4.67]   |                                                  |
| Pan 2020                                                  | 36.5           | 0.18          | 25       | 33.7           | 8.8          | 25       | 1.2%         | 2.80 [-1.38, 6.98]                        |                                                  |
| Qi 2019                                                   | 41.69          | 4.25          | 48       | 37.25          |              | 48       | 1.5%         | 4.44 [2.80, 6.08]                         | <del></del>                                      |
| Raja 2017                                                 | 30.1           | 4             | 63       | 28.1           | 4            | 62       | 1.5%         | 2.00 [0.60, 3.40]                         | <del></del>                                      |
| Sallam 2016                                               | 42             | 17            | 50       | 37             | 13           | 50       | 0.9%         | 5.00 [-0.93, 10.93]                       | <del>                                     </del> |
| Shen 2018                                                 | 51.2           | 1.6           | 56       | 43.2           | 1.3          | 56       | 1.5%         | 8.00 [7.46, 8.54]                         | -                                                |
| SHIFT 2010                                                | 34.7           | 10.2          | 204      | 31.5           | 10           | 199      | 1.4%         | 3.20 [1.23, 5.17]                         | <del></del>                                      |
| Song 2021                                                 | 63.16          | 3.17          | 48       | 51.67          |              | 48       |              | 11.49 [10.16, 12.82]                      |                                                  |
| Su 2020                                                   | 52.1           | 4.2           | 40       | 46.2           | - 5          | 30       | 1.4%         | 5.90 [3.69, 8.11]                         |                                                  |
| Su DL 2020                                                | 45.28          | 4.14          | 30       | 39.56          | 5.21         | 30       | 1.4%         | 5.72 [3.34, 8.10]                         |                                                  |
| Sun 2021                                                  | 50.2           | 5.6           | 59       | 43.4           | 5.5          | 59       | 1.4%         | 6.80 [4.80, 8.80]                         | <u></u> _                                        |
| Tang 2018<br>Tatarchenko 2008                             | 41.1<br>58.9   | 4.93<br>2.8   | 31<br>29 | 38<br>51.2     | 4.59<br>4.1  | 31<br>30 | 1.4%<br>1.5% | 3.10 [0.73, 5.47]<br>7.70 [5.91, 9.49]    |                                                  |
| Tsutsui 2.5mg 2016                                        | 33.8           | 8.7           | 41       | 31.2           | 8.8          | 20       | 1.1%         | 2.80 [-1.89, 7.49]                        |                                                  |
| Tsutsui 2019                                              | 38.9           | 12.8          | 127      | 33.3           | 13           | 127      | 1.3%         | 5.60 [2.43, 8.77]                         |                                                  |
| Tsutsui 5mg 2016                                          | 35             | 10.4          | 40       | 31             | 8.8          | 21       | 1.1%         | 4.00 [-0.96, 8.96]                        | <del> </del>                                     |
| Vatinian 2015                                             | 51.2           | 2.1           | 26       | 45.3           | 1.9          | 26       | 1.5%         | 5.90 [4.81, 6.99]                         | <del>-</del>                                     |
| Wang 2019                                                 | 37.79          | 5.23          | 35       | 37.32          | 4.86         | 33       | 1.4%         | 0.47 [-1.93, 2.87]                        | <del></del>                                      |
| Wang FC 2017                                              | 42.51          | 6.03          | 53       | 36.78          | 7.4          | 43       | 1.4%         | 5.73 [2.99, 8.47]                         |                                                  |
| Wang GK 2020                                              | 55.3           | 10.4          | 36       | 52.2           |              | 36       | 1.1%         | 3.10 [-1.87, 8.07]                        | <del>                                     </del> |
| Wang LJ 2020                                              | 58.63          | 4.25          | 35       | 52.34          |              | 35       | 1.4%         | 6.29 [4.35, 8.23]                         |                                                  |
| Wang RM 2017<br>Wang V⊔ 2010                              | 49.06          | 7.05          | 39       | 43.03          |              | 39       | 1.3%         | 6.03 [2.94, 9.12]                         | <u> </u>                                         |
| Wang YH 2018<br>Wei 2019                                  | 55.35<br>48.14 | 7.1<br>2.62   | 34<br>32 | 52.86<br>41.69 | 6.2<br>1.06  | 34<br>32 | 1.3%<br>1.5% | 2.49 [-0.68, 5.66]<br>6.45 [5.47, 7.43]   |                                                  |
| Xia 2016                                                  | 48.25          | 6.65          | 39       | 41.57          |              | 39       | 1.4%         | 6.68 [3.88, 9.48]                         |                                                  |
| Xu 2019                                                   | 46.23          | 3.8           | 38       | 43.9           | 3.4          | 39       | 1.5%         | 2.30 [0.69, 3.91]                         |                                                  |
| Xu 2020                                                   | 49.83          | 3.25          | 61       | 45.01          |              | 61       | 1.5%         | 4.82 [3.75, 5.89]                         | -                                                |
| Yang WT 2019                                              | 48.3           | 5.4           | 40       | 43.2           | 6.5          | 40       | 1.4%         | 5.10 [2.48, 7.72]                         |                                                  |
| Yang Z 2019                                               | 46.87          | 6.38          | 67       | 43.61          |              | 68       | 1.4%         | 3.26 [1.03, 5.49]                         | <del></del>                                      |
| Yao 2016                                                  | 38.22          | 4.86          | 36       | 34.23          |              | 36       | 1.4%         | 3.99 [2.03, 5.95]                         |                                                  |
| Yi 2017                                                   | 37.72          | 7.6           | 43       | 31.84          |              | 42       | 1.3%         | 5.88 [2.96, 8.80]                         |                                                  |
| Yu 2019                                                   | 29.3           | 3             | 33       | 27.7           | 3.4          | 33       | 1.5%         | 1.60 [0.05, 3.15]                         | _                                                |
| Yue 2016                                                  | 39.78          | 3.44          | 40       | 37.7           |              | 40       | 1.5%         | 2.08 [0.61, 3.55]                         | <del></del>                                      |
| Zeng FC 2019<br>Zeng VM 2019                              | 59.36<br>57.6  | 6.25          | 33<br>45 | 53.17          |              | 32<br>45 | 1.3%         | 6.19 [3.33, 9.05]<br>12.40 [10.56, 14.24] |                                                  |
| Zeng XM 2019<br>Zhang 2019                                | 57.6<br>67     | 4.2<br>8      | 45<br>30 | 45.2<br>62     | 4.7<br>5.4   | 45<br>30 | 1.5%         | 5.00 [1.55, 8.45]                         | l                                                |
| Zhang 2019<br>Zhang 2020                                  | 50.21          | 6.47          | 43       | 45.19          |              | 42       | 1.3%         | 5.02 [2.17, 7.87]                         | <del></del>                                      |
| Zhang 2020<br>Zhang 2021                                  | 48.32          | 4.23          | 47       | 43.76          |              | 47       | 1.5%         | 4.56 [2.87, 6.25]                         |                                                  |
| Zhang J 2019                                              | 35.16          | 2.68          | 45       | 35.34          |              | 41       | 1.5%         | -0.18 [-1.35, 0.99]                       | +                                                |
| Zhang XJ 2019                                             | 51.77          | 3.84          | 55       | 38.02          |              | 55       |              | 13.75 [12.52, 14.98]                      | -                                                |
| Zhang Y 2020                                              | 57             | 12            | 27       | 51             | 12           | 27       | 0.9%         | 6.00 [-0.40, 12.40]                       | <del>                                     </del> |
| Zhou 2019                                                 | 47.89          | 7.89          | 30       | 34.34          |              | 30       |              | 13.55 [10.07, 17.03]                      | <del></del>                                      |
| Zhou 2020                                                 | 46.8           | 6.3           | 43       | 36.7           | 7.6          | 43       | 1.3%         | 10.10 [7.15, 13.05]                       |                                                  |
|                                                           |                |               |          |                |              |          |              |                                           |                                                  |
|                                                           |                |               | 2222     |                |              | 2220     | 400.00       | E 42 F4 F0 0 0 0 0                        | _                                                |
| Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = 13.85 | F. Ob. 7       |               | 3323     | o (D           |              |          | 100.0%       | 5.43 [4.52, 6.34]                         |                                                  |

Figure 69 - Forest plot of the meta-analysis of left ventricular ejection fraction using random-effects meta-analysis. The meta-analysis showed that ivabradine seemed to increase the left ventricular ejection fraction by 5.43%.

| Study or Subarons                     |             | oradine | Total       | Co<br>Mean  | ntrol<br>SD | Total | Weight         | Mean Difference                         | Mean Difference<br>IV, Fixed, 95% CI             |
|---------------------------------------|-------------|---------|-------------|-------------|-------------|-------|----------------|-----------------------------------------|--------------------------------------------------|
| Study or Subgroup<br>Abdel-Salam 2015 | Mean<br>39  | 7       | Total<br>20 | 33          | 10          | 23    | Weight<br>0.1% | IV, Fixed, 95% CI<br>6.00 [0.89, 11.11] | IV, Fixed, 95% CI                                |
| Bansal 2019                           | 35          | 3.71    | 78          | 33          | 4.24        | 80    | 2.3%           | 2.00 [0.76, 3.24]                       |                                                  |
| Barilla 2016                          | 4.1         | 2.5     | 30          | 0.8         | 1.2         | 28    | 3.6%           | 3.30 [2.30, 4.30]                       | -                                                |
| 3i 2020                               | 63.06       | 9.85    | 99          |             | 7.16        | 99    | 0.6%           | 18.79 [16.39, 21.19]                    | _                                                |
| Cao 2019                              | 52.39       | 5.32    | 41          | 39.89       | 4.98        | 41    | 0.7%           | 12.50 [10.27, 14.73]                    |                                                  |
| Cavosoglu 2015                        | 26.4        | 5.3     | 29          | 28.4        | 4.3         | 29    | 0.6%           | -2.00 [-4.48, 0.48]                     |                                                  |
| Chaudhari 2014                        | 35          | 3.71    | 78          |             | 4.24        | 80    | 2.3%           | 2.00 [0.76, 3.24]                       |                                                  |
|                                       | 48.25       | 6.68    | 45          | 42.64       | 8.4         | 45    | 0.4%           |                                         |                                                  |
| Cheng 2017                            | 58.49       | 5.51    | 30          | 49.67       |             | 30    |                | 5.61 [2.47, 8.75]                       |                                                  |
| Chen G 2020<br>Chen HX 2021           | 41.77       | 6.02    | 30          | 34.92       |             | 30    | 0.6%<br>0.4%   | 8.82 [6.35, 11.29]                      | <u></u>                                          |
|                                       |             | 8       |             |             |             |       |                | 6.85 [4.02, 9.68]                       |                                                  |
| CONSTATHE-DHF 2016                    | 29          |         | 13          | 25          | 8           | 13    | 0.1%           | 4.00 [-2.15, 10.15]                     |                                                  |
| Di 2020                               | 49.98       | 4.98    | 63          | 44.67       | 4.5         | 63    | 1.3%           | 5.31 [3.65, 6.97]                       |                                                  |
| Fu 2021                               | 51.6        | 5.3     | 32          | 49          | 4.8         | 32    | 0.6%           | 2.60 [0.12, 5.08]                       |                                                  |
| 3uo 2017                              | 42.301      | 6.358   | 16          | 32.603      | 4.7         | 16    | 0.2%           | 9.70 [5.82, 13.57]                      |                                                  |
| He 2019                               | 33.51       | 10.12   | 30          | 31.12       |             | 31    | 0.1%           | 2.39 [-2.52, 7.30]                      |                                                  |
| Hu 2017                               | 48.31       | 6.54    | 30          | 41.73       |             | 30    | 0.4%           | 6.58 [3.41, 9.75]                       |                                                  |
| Hu 2018                               | 39.2        | 12.1    | 85          | 38.9        | 11.2        | 84    | 0.3%           | 0.30 [-3.21, 3.81]                      |                                                  |
| Huang J 2017                          | 40          | 6       | 52          | 34          | 7           | 50    | 0.6%           | 6.00 [3.47, 8.53]                       | —                                                |
| Kosmala 2013                          | 68          | 6       | 30          | 68          | 5           | 31    | 0.5%           | 0.00 [-2.78, 2.78]                      | <del></del>                                      |
| _i 2018                               | 52.5        | 2.5     | 45          | 41.9        | 2.6         | 44    | 3.2%           | 10.60 [9.54, 11.66]                     |                                                  |
| _i 2020                               | 39.84       | 3.69    | 48          | 36.26       | 2.47        | 48    | 2.3%           | 3.58 [2.32, 4.84]                       | —                                                |
| Li B 2020                             | 50.09       | 5.32    | 55          | 45.94       | 4.83        | 55    | 1.0%           | 4.15 [2.25, 6.05]                       |                                                  |
| _iu 2019                              | 57.6        | 6.7     | 48          | 47.9        | 8.7         | 48    | 0.4%           | 9.70 [6.59, 12.81]                      |                                                  |
| _iu 2020                              | 51.54       | 1.18    | 49          | 41.29       |             | 49    | 20.1%          | 10.25 [9.83, 10.67]                     | •                                                |
| _u 2019                               | 41.27       | 4.65    | 28          | 38.1        | 4.15        | 27    | 0.7%           | 3.17 [0.84, 5.50]                       | <del></del>                                      |
| _uo 2021                              | 48.29       | 5.32    | 60          | 45.31       | 4.56        | 60    | 1.1%           | 2.98 [1.21, 4.75]                       |                                                  |
| /la 2016                              | 36          | 3.11    | 30          | 32.3        | 2.99        | 30    | 1.5%           | 3.70 [2.16, 5.24]                       |                                                  |
| da 2020                               | 58.01       | 8.39    | 43          | 46.32       | 7.15        | 43    | 0.3%           | 11.69 [8.40, 14.98]                     |                                                  |
| Mansour 2011                          | 6.2         | 8.3     | 27          | 1.8         | 6.7         | 23    | 0.2%           | 4.40 [0.24, 8.56]                       | <del></del>                                      |
| Manz 2003                             | 37.2        | 10.01   | 27          | 38.4        | 9.3         | 11    | 0.1%           | -1.20 [-7.87, 5.47]                     | <del></del>                                      |
| /lao 2018                             | 44.3        | 7.9     | 30          | 39.3        | 7.1         | 30    | 0.2%           | 5.00 [1.20, 8.80]                       | <del></del>                                      |
| Moiseev 2011                          | 36.5        | 8.19    | 26          | 35.7        | 5.51        | 23    | 0.2%           | 0.80 [-3.07, 4.67]                      | <del></del>                                      |
| Pan 2020                              | 36.5        | 6       | 25          | 33.7        | 8.8         | 25    | 0.2%           | 2.80 [-1.38, 6.98]                      | <del></del>                                      |
| Qi 2019                               | 41.69       | 4.25    | 48          | 37.25       | 3.92        | 48    | 1.3%           | 4.44 [2.80, 6.08]                       | <del></del>                                      |
| Raja 2017                             | 30.1        | 4       | 63          | 28.1        | 4           | 62    | 1.8%           | 2.00 [0.60, 3.40]                       | <del></del>                                      |
| 3allam 2016                           | 42          | 17      | 50          | 37          | 13          | 50    | 0.1%           | 5.00 [-0.93, 10.93]                     | <del> </del>                                     |
| 3hen 2018                             | 51.2        | 1.6     | 56          | 43.2        | 1.3         | 56    | 12.3%          | 8.00 [7.46, 8.54]                       |                                                  |
| 3HIFT 2010                            | 34.7        | 10.2    | 204         | 31.5        | 10          | 199   | 0.9%           | 3.20 [1.23, 5.17]                       | <del></del>                                      |
| 30ng 2021                             | 63.16       | 3.17    | 48          | 51.67       |             | 48    |                | 11.49 [10.16, 12.82]                    |                                                  |
| 3u 2020                               | 52.1        | 4.2     | 40          | 46.2        | 5.40        | 30    | 0.7%           | 5.90 [3.69, 8.11]                       |                                                  |
| 3u DL 2020                            | 45.28       | 4.14    | 30          | 39.56       | 5.21        | 30    | 0.6%           | 5.72 [3.34, 8.10]                       |                                                  |
| 3un 2021                              | 50.2        | 5.6     | 59          | 43.4        | 5.5         | 59    | 0.0%           |                                         |                                                  |
|                                       |             |         |             |             |             |       |                | 6.80 [4.80, 8.80]                       | <u> </u>                                         |
| Fang 2018                             | 41.1        | 4.93    | 31          | 38          | 4.59        | 31    | 0.6%           | 3.10 [0.73, 5.47]                       |                                                  |
| Fatarchenko 2008                      | 58.9        | 2.8     | 29          | 51.2        | 4.1         | 30    | 1.1%           | 7.70 [5.91, 9.49]                       |                                                  |
| Fsutsui 2.5mg 2016                    | 33.8        | 8.7     | 41          | 31          | 8.8         | 20    | 0.2%           | 2.80 [-1.89, 7.49]                      | <u> </u>                                         |
| rsutsui 2019                          | 38.9        | 12.8    | 127         | 33.3        | 13          | 127   | 0.4%           | 5.60 [2.43, 8.77]                       | —                                                |
| rsutsui 5mg 2016                      | 35          | 10.4    | 40          | 31          | 8.8         | 21    | 0.1%           | 4.00 [-0.96, 8.96]                      | <del>                                     </del> |
| /atinian 2015                         | 51.2        | 2.1     | 26          | 45.3        | 1.9         | 26    | 3.0%           | 5.90 [4.81, 6.99]                       | _                                                |
| Vang 2019                             | 37.79       | 5.23    | 35          | 37.32       |             | 33    | 0.6%           | 0.47 [-1.93, 2.87]                      | <del>-</del>                                     |
| Vang FC 2017                          | 42.51       | 6.03    | 53          | 36.78       | 7.4         | 43    | 0.5%           | 5.73 [2.99, 8.47]                       | <del></del>                                      |
| Vang GK 2020                          | 55.3        | 10.4    | 36          | 52.2        |             | 36    | 0.1%           | 3.10 [-1.87, 8.07]                      | <del>                                     </del> |
| 2020 ليا Vang                         | 58.63       | 4.25    | 35          | 52.34       |             | 35    | 1.0%           | 6.29 [4.35, 8.23]                       |                                                  |
| Vang RM 2017                          | 49.06       | 7.05    | 39          | 43.03       |             | 39    | 0.4%           | 6.03 [2.94, 9.12]                       |                                                  |
| Vang YH 2018                          | 55.35       | 7.1     | 34          | 52.86       | 6.2         | 34    | 0.4%           | 2.49 [-0.68, 5.66]                      | +                                                |
| Vei 2019                              | 48.14       | 2.62    | 32          | 41.69       |             | 32    | 3.7%           | 6.45 [5.47, 7.43]                       | +                                                |
| (ia 2016                              | 48.25       | 6.65    | 39          | 41.57       | 5.96        | 39    | 0.5%           | 6.68 [3.88, 9.48]                       |                                                  |
| (u 2019                               | 46.2        | 3.8     | 38          | 43.9        | 3.4         | 39    | 1.4%           | 2.30 [0.69, 3.91]                       |                                                  |
| (u 2020                               | 49.83       | 3.25    | 61          | 45.01       | 2.76        | 61    | 3.1%           | 4.82 [3.75, 5.89]                       | +                                                |
| /ang WT 2019                          | 48.3        | 5.4     | 40          | 43.2        | 6.5         | 40    | 0.5%           | 5.10 [2.48, 7.72]                       | ——                                               |
| ang Z 2019                            | 46.87       | 6.38    | 67          | 43.61       | 6.82        | 68    | 0.7%           | 3.26 [1.03, 5.49]                       | <del></del>                                      |
| /ao 2016                              | 38.22       | 4.86    | 36          | 34.23       | 3.52        | 36    | 0.9%           | 3.99 [2.03, 5.95]                       |                                                  |
| ′i 2017                               | 37.72       | 7.6     | 43          | 31.84       |             | 42    | 0.4%           | 5.88 [2.96, 8.80]                       |                                                  |
| /u 2019                               | 29.3        | 3       | 33          | 27.7        | 3.4         | 33    | 1.5%           | 1.60 [0.05, 3.15]                       | <del> </del>                                     |
| /ue 2016                              | 39.78       | 3.44    | 40          | 37.7        |             | 40    | 1.6%           | 2.08 [0.61, 3.55]                       |                                                  |
| eng FC 2019                           | 59.36       | 6.25    | 33          | 53.17       |             | 32    | 0.4%           | 6.19 [3.33, 9.05]                       |                                                  |
| Zeng XM 2019                          | 57.6        | 4.2     | 45          | 45.2        | 4.7         | 45    |                | 12.40 [10.56, 14.24]                    |                                                  |
| Thang 2019                            | 67          | 8       | 30          | 62          | 5.4         | 30    | 0.3%           | 5.00 [1.55, 8.45]                       | <del></del>                                      |
| Thang 2020                            | 50.21       | 6.47    | 43          | 45.19       |             | 42    | 0.4%           | 5.02 [2.17, 7.87]                       | <del></del>                                      |
| Thang 2020<br>Thang 2021              | 48.32       | 4.23    | 47          | 43.76       |             | 47    | 1.3%           | 4.56 [2.87, 6.25]                       |                                                  |
| Inang 2021<br>Inang J 2019            | 35.16       | 2.68    | 47          | 35.34       |             | 41    | 2.6%           | -0.18 [-1.35, 0.99]                     |                                                  |
| Thang XJ 2019<br>Thang XJ 2019        | 51.77       | 3.84    | 55          | 38.02       |             | 55    |                | 13.75 [12.52, 14.98]                    |                                                  |
| -                                     |             | 12      |             |             | 12          |       |                |                                         |                                                  |
| Zhang Y 2020<br>Zhou 2010             | 57<br>47.00 |         | 27          | 51<br>24 24 |             | 27    | 0.1%           | 6.00 [-0.40, 12.40]                     |                                                  |
| Zhou 2019<br>Zhou 2020                | 47.89       | 7.89    | 30          | 34.34       |             | 30    |                | 13.55 [10.07, 17.03]                    |                                                  |
| Zhou 2020                             | 46.8        | 6.3     | 43          | 36.7        | 7.6         | 43    | 0.4%           | 10.10 [7.15, 13.05]                     |                                                  |
| otal (95% CI)                         |             |         | 3333        |             |             | 3330  | 100.0%         | 663 [6 44 6 02]                         | 1                                                |
| Otal 19370 CII                        |             |         | 3323        |             |             | J230  | 100.0%         | 6.63 [6.44, 6.82]                       |                                                  |
| eterogeneity: Chi² = 1459             |             |         |             |             |             |       |                |                                         |                                                  |

Figure 70 - Forest plot of the meta-analysis of left ventricular ejection fraction using fixed-effect meta-analysis. The meta-analysis showed that ivabradine seemed to increase the left ventricular ejection fraction by 6.63%.



| -                              | lvabrad    | dine      | Contr         | ol    |        | Risk Ratio         | Risk Ratio                                           |
|--------------------------------|------------|-----------|---------------|-------|--------|--------------------|------------------------------------------------------|
| Study or Subgroup              | Events     | Total     | <b>Events</b> | Total | Weight | M-H, Fixed, 95% CI | M-H, Fixed, 95% CI                                   |
| Abdel-Salam 2015               | 1          | 20        | 2             | 23    | 0.1%   | 0.57 [0.06, 5.88]  | <del></del>                                          |
| Adamyan 2008                   | 4          | 70        | 11            | 75    | 0.4%   | 0.39 [0.13, 1.17]  | <del></del>                                          |
| Babushkina 2020                | 8          | 56        | 14            | 53    | 0.6%   | 0.54 [0.25, 1.18]  | <del></del>                                          |
| Bansal 2019                    | 19         | 78        | 44            | 80    | 1.8%   | 0.44 [0.29, 0.69]  | <del></del>                                          |
| BEAUTIFUL 2008                 | 681        | 5479      | 704           | 5438  | 29.9%  | 0.96 [0.87, 1.06]  | •                                                    |
| CONSTATHE-DHF 2016             | 1          | 13        | 0             | 13    | 0.0%   | 3.00 [0.13, 67.51] | <del></del>                                          |
| Luo 2021                       | 4          | 60        | 10            | 60    | 0.4%   | 0.40 [0.13, 1.21]  |                                                      |
| Moiseev 2011                   | 3          | 26        | 6             | 23    | 0.3%   | 0.44 [0.12, 1.57]  | <del></del>                                          |
| SHIFT 2010                     | 1231       | 3241      | 1356          | 3264  | 57.2%  | 0.91 [0.86, 0.97]  | •                                                    |
| Tsutsui 2019                   | 55         | 127       | 63            | 127   | 2.7%   | 0.87 [0.67, 1.14]  | +                                                    |
| Tumasyan 2016                  | 17         | 53        | 29            | 53    | 1.2%   | 0.59 [0.37, 0.93]  | <del></del>                                          |
| Tumasyan 2017                  | 33         | 53        | 47            | 57    | 1.9%   | 0.76 [0.59, 0.96]  | <del></del>                                          |
| Tumasyan 2018                  | 28         | 46        | 38            | 45    | 1.6%   | 0.72 [0.55, 0.94]  | <del></del>                                          |
| Wang GK 2020                   | 1          | 36        | 2             | 36    | 0.1%   | 0.50 [0.05, 5.27]  | · · · · · · · · · · · · · · · · · · ·                |
| Wang Q 2017                    | 3          | 56        | 10            | 57    | 0.4%   | 0.31 [0.09, 1.05]  | <del></del>                                          |
| Wang RM 2017                   | 4          | 39        | 9             | 39    | 0.4%   | 0.44 [0.15, 1.32]  | <del></del>                                          |
| Zhou 2019                      | 12         | 30        | 19            | 30    | 0.8%   | 0.63 [0.38, 1.06]  | <del></del>                                          |
| Total (95% CI)                 |            | 9483      |               | 9473  | 100.0% | 0.89 [0.85, 0.94]  | •                                                    |
| Total events                   | 2105       |           | 2364          |       |        |                    |                                                      |
| Heterogeneity: Chi² = 34.25    | 5, df = 16 | (P = 0.0) | 005); I² =    | 53%   |        |                    | 0.01 0.1 1 10 100                                    |
| Test for overall effect: Z = 4 | .57 (P < 0 | .00001    | )             |       |        |                    | 0.01 0.1 1 10 100 Favours ivabradine Favours control |
|                                |            |           |               |       |        |                    | i avours ivabraunte   Favours Control                |

Figure 71 – Forest plot of the meta-analysis of hospitalisation during follow-up using fixed-effect meta-analysis. The meta-analysis showed evidence of a beneficial effect ivabradine versus control (placebo or no intervention) of a risk ratio of 0.89.

|                                | lvabrad              | line     | Conti         | rol    |                         | Risk Ratio          | Risk Ratio                                           |
|--------------------------------|----------------------|----------|---------------|--------|-------------------------|---------------------|------------------------------------------------------|
| Study or Subgroup              | Events               | Total    | <b>Events</b> | Total  | Weight                  | M-H, Random, 95% CI | M-H, Random, 95% CI                                  |
| Abdel-Salam 2015               | 1                    | 20       | 2             | 23     | 0.3%                    | 0.57 [0.06, 5.88]   | <del></del>                                          |
| Adamyan 2008                   | 4                    | 70       | 11            | 75     | 1.3%                    | 0.39 [0.13, 1.17]   | <del></del>                                          |
| Babushkina 2020                | 8                    | 56       | 14            | 53     | 2.3%                    | 0.54 [0.25, 1.18]   | <del></del>                                          |
| Bansal 2019                    | 19                   | 78       | 44            | 80     | 6.1%                    | 0.44 [0.29, 0.69]   |                                                      |
| BEAUTIFUL 2008                 | 681                  | 5479     | 704           | 5438   | 19.3%                   | 0.96 [0.87, 1.06]   | •                                                    |
| CONSTATHE-DHF 2016             | 1                    | 13       | 0             | 13     | 0.2%                    | 3.00 [0.13, 67.51]  | <del></del>                                          |
| Luo 2021                       | 4                    | 60       | 10            | 60     | 1.2%                    | 0.40 [0.13, 1.21]   | <del></del>                                          |
| Moiseev 2011                   | 3                    | 26       | 6             | 23     | 1.0%                    | 0.44 [0.12, 1.57]   | <del></del>                                          |
| SHIFT 2010                     | 1231                 | 3241     | 1356          | 3264   | 20.8%                   | 0.91 [0.86, 0.97]   | •                                                    |
| Tsutsui 2019                   | 55                   | 127      | 63            | 127    | 11.2%                   | 0.87 [0.67, 1.14]   | <del>-</del>                                         |
| Tumasyan 2016                  | 17                   | 53       | 29            | 53     | 5.6%                    | 0.59 [0.37, 0.93]   |                                                      |
| Tumasyan 2017                  | 33                   | 53       | 47            | 57     | 12.2%                   | 0.76 [0.59, 0.96]   |                                                      |
| Tumasyan 2018                  | 28                   | 46       | 38            | 45     | 11.2%                   | 0.72 [0.55, 0.94]   |                                                      |
| Wang GK 2020                   | 1                    | 36       | 2             | 36     | 0.3%                    | 0.50 [0.05, 5.27]   |                                                      |
| Wang Q 2017                    | 3                    | 56       | 10            | 57     | 1.0%                    | 0.31 [0.09, 1.05]   | -                                                    |
| Wang RM 2017                   | 4                    | 39       | 9             | 39     | 1.3%                    | 0.44 [0.15, 1.32]   | <del></del>                                          |
| Zhou 2019                      | 12                   | 30       | 19            | 30     | 4.7%                    | 0.63 [0.38, 1.06]   | <del></del>                                          |
| Total (95% CI)                 |                      | 9483     |               | 9473   | 100.0%                  | 0.75 [0.66, 0.86]   | <b>•</b>                                             |
| Total events                   | 2105                 |          | 2364          |        |                         |                     |                                                      |
| Heterogeneity: Tau² = 0.02;    | Chi <sup>2</sup> = 3 | 4.25, df | = 16 (P =     | 0.005) | ); I <sup>z</sup> = 53% | 6                   | 0.01 0.1 1 10 100                                    |
| Test for overall effect: Z = 4 | .38 (P < 0           | .0001)   |               |        |                         |                     | 0.01 0.1 1 10 100 Favours ivabradine Favours control |
|                                |                      |          |               |        |                         |                     | Favours ivabraume Favours Control                    |

Figure 72 - Forest plot of the meta-analysis of hospitalisation during follow-up using random-effects meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine versus control (placebo or no intervention) of a risk ratio of 0.75.



|                                                                                                                                           | Ivabradine |        |       | Control |        |       |        | Mean Difference                                      | Mean Difference                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|-------|---------|--------|-------|--------|------------------------------------------------------|--------------------------------------------------|
| Study or Subgroup                                                                                                                         | Mean       | SD     | Total | Mean    | SD     | Total | Weight | IV, Fixed, 95% CI                                    | IV, Fixed, 95% CI                                |
| Cavosoglu 2015                                                                                                                            | 195        | 96     | 29    | 166     | 52     | 29    | 1.1%   | 29.00 [-10.74, 68.74]                                | <del></del>                                      |
| Cheng 2017                                                                                                                                | 322.33     | 175.15 | 45    | 235.56  | 171.25 | 45    | 0.3%   | 86.77 [15.20, 158.34]                                |                                                  |
| Cong 2018                                                                                                                                 | 522.19     | 52.35  | 45    | 442.14  | 42.12  | 45    | 4.4%   | 80.05 [60.42, 99.68]                                 |                                                  |
| EDIFY 2017                                                                                                                                | 4.3        | 50     | 84    | 7.9     | 67.9   | 84    | 5.2%   | -3.60 [-21.63, 14.43]                                | <del></del>                                      |
| Fu 2021                                                                                                                                   | 284.3      | 45     | 32    | 346.1   | 60.5   | 32    | 2.5%   | -61.80 [-87.92, -35.68]                              |                                                  |
| Gou 2017                                                                                                                                  | 198.7      | 56.31  | 30    | 162.01  | 57.36  | 30    | 2.0%   | 36.69 [7.93, 65.45]                                  | <del></del>                                      |
| Guo 2017                                                                                                                                  | 454.752    | 35.173 | 16    | 415.375 | 52.456 | 16    | 1.8%   | 39.38 [8.43, 70.32]                                  |                                                  |
| He 2019                                                                                                                                   | 428.1      | 25.52  | 30    | 350.8   | 26.8   | 31    | 9.8%   | 77.30 [64.17, 90.43]                                 | <del></del>                                      |
| Huang J 2017                                                                                                                              | 386.41     | 101.75 | 52    | 306.24  | 135.87 | 50    | 0.8%   | 80.17 [33.45, 126.89]                                |                                                  |
| Li 2018                                                                                                                                   | 421.1      | 31.5   | 45    | 382.1   | 31.2   | 44    | 9.9%   | 39.00 [25.97, 52.03]                                 | <del></del>                                      |
| Liu 2019                                                                                                                                  | 523.27     | 45.46  | 49    | 446.25  | 39.23  | 49    | 6.0%   | 77.02 [60.21, 93.83]                                 |                                                  |
| Liu Y 2020                                                                                                                                | 386        | 38     | 61    | 331     | 45     | 61    | 7.7%   | 55.00 [40.22, 69.78]                                 |                                                  |
| Lu 2019                                                                                                                                   | 427.57     | 46.61  | 28    | 367.27  | 52.23  | 27    | 2.5%   | 60.30 [34.10, 86.50]                                 |                                                  |
| Luo 2021                                                                                                                                  | 357.57     | 70.86  | 60    | 303.12  | 72.13  | 60    | 2.6%   | 54.45 [28.87, 80.03]                                 |                                                  |
| Ma 2016                                                                                                                                   | 336        | 53.66  | 30    | 344.3   | 42.71  | 30    | 2.8%   | -8.30 [-32.84, 16.24]                                | <del></del>                                      |
| Manz 2003                                                                                                                                 | 379        | 117    | 30    | 307     | 98     | 30    | 0.6%   | 72.00 [17.39, 126.61]                                |                                                  |
| Mao 2018                                                                                                                                  | 379        | 117    | 30    | 307     | 98     | 30    | 0.6%   | 72.00 [17.39, 126.61]                                |                                                  |
| Pan 2020                                                                                                                                  | 378.6      | 48.5   | 19    | 366.2   | 42.8   | 18    | 1.9%   | 12.40 [-17.04, 41.84]                                | <del></del>                                      |
| Raja 2017                                                                                                                                 | 493.5      | 4.6    | 63    | 367     | 82     | 62    | 4.0%   | 126.50 [106.06, 146.94]                              | · ·                                              |
| Song 2021                                                                                                                                 | 340.62     | 65.69  | 48    | 289.62  | 45.66  | 48    | 3.3%   | 51.00 [28.37, 73.63]                                 |                                                  |
| Su DL 2020                                                                                                                                | 422.54     | 51.24  | 30    | 378.76  | 39.67  | 30    | 3.1%   | 43.78 [20.59, 66.97]                                 |                                                  |
| Wang FC 2017                                                                                                                              | 384.2      | 43     | 53    | 278.5   | 82.7   | 43    | 2.3%   | 105.70 [78.41, 132.99]                               |                                                  |
| Wang GK 2020                                                                                                                              | 347.9      | 80.8   | 36    | 299.1   | 87.2   | 36    | 1.1%   | 48.80 [9.97, 87.63]                                  |                                                  |
| Xu 2020                                                                                                                                   | 396.52     | 36     | 61    | 341     | 30     | 61    | 12.2%  | 55.52 [43.76, 67.28]                                 |                                                  |
| Yu 2019                                                                                                                                   | 402.2      | 53.7   | 33    | 351.3   | 44.5   | 33    | 3.0%   | 50.90 [27.11, 74.69]                                 |                                                  |
| Yue 2016                                                                                                                                  | 341.7      | 76.69  | 40    | 313.83  | 72.98  | 40    | 1.6%   | 27.87 [-4.94, 60.68]                                 | <del>                                     </del> |
| Zhang J 2019                                                                                                                              | 336.19     | 47.02  | 36    | 308.75  | 60.33  | 28    | 2.3%   | 27.44 [0.32, 54.56]                                  |                                                  |
| Zhang XJ 2019                                                                                                                             | 411.47     | 123.49 | 55    | 324.21  | 102.55 | 55    | 0.9%   | 87.26 [44.84, 129.68]                                |                                                  |
| Zhou 2019                                                                                                                                 | 270.24     | 43.34  | 30    | 256.9   | 47.65  | 30    | 3.2%   | 13.34 [-9.71, 36.39]                                 | +                                                |
| Zhou 2020                                                                                                                                 | 361.7      | 97.5   | 43    | 294.6   | 104.8  | 43    | 0.9%   | 67.10 [24.32, 109.88]                                |                                                  |
| Total (95% CI)                                                                                                                            |            |        | 1243  |         |        | 1220  | 100.0% | 50.62 [46.52, 54.72]                                 | •                                                |
| Heterogeneity: Chi <sup>2</sup> = 266.41, df = 29 (P < 0.00001); I <sup>2</sup> = 89%<br>Test for overall effect: Z = 24.19 (P < 0.00001) |            |        |       |         |        |       |        | -100 -50 0 50 100 Favours control Favours ivabradine |                                                  |

Figure 73 – Forest plot of the meta-analysis of 6-minutes walking distance using fixed-effect meta-analysis. The meta-analysis showed evidence of a beneficial effect of ivabradine versus control (placebo or no intervention) of 50.62 meters per 6 minutes.

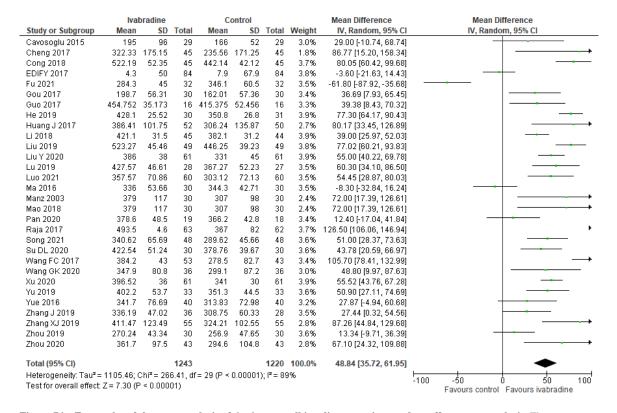



Figure 74 – Forest plot of the meta-analysis of 6-minutes walking distance using random-effects meta-analysis. The meta-analysis shows evidence of a beneficial effect of ivabradine versus control (placebo or no intervention) of 48.84 meters per 6 minutes.