Skip to main content

Advertisement

Log in

Clinical Development Approaches and Statistical Methodologies to Prospectively Assess the Cardiovascular Risk of New Antidiabetic Therapies for Type 2 Diabetes

  • Product Safety
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

In December 2008, the US Food and Drug Administration (FDA) issued a guidance for industry requiring sponsors to demonstrate that a new antidiabetic therapy being developed to treat type 2 diabetes does not increase cardiovascular (CV) risk to an unacceptable extent. CV events reported during phase 2 and phase 3 trials should be prospectively and independently adjudicated. Before submission of a new drug application or biologics license application, sponsors should compare the incidence of major CV events occurring with the investigational agent versus the control group to show that the upper bound of the 2-sided 95% confidence interval (CI) for the estimated risk ratio is less than 1.8. If the CI includes 1.3, a postmarketing trial will be necessary to definitively show that the upper bound of the 95% CI for the estimated risk ratio is then less than 1.3. In 2012, the European Medicines Agency (EMA) issued an updated guideline on the clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus that detailed its CV safety assessment requirements. Although similar to the FDA guidance, the EMA guideline does not prospectively define any pre- or postapproval risk margins. This expert perspective, prepared by members of the Cardiac Safety Research Consortium, discusses clinical development strategies, operational issues, and statistical methodological issues to satisfy the FDA’s CV safety requirements, and, where appropriate, the EMA guideline. Actual case examples, where applicable, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Meigs JB. Epidemiology of cardiovascular complications in type 2 diabetes. Acta Diabetol. 2003;40:S358–S361.

    Article  PubMed  Google Scholar 

  2. Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA. 2005;294:2581–2586.

    Article  CAS  PubMed  Google Scholar 

  3. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–2471.

    Article  CAS  PubMed  Google Scholar 

  4. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med. 2010;170:1191–1201.

    Article  CAS  PubMed  Google Scholar 

  5. Schramm TK, Gislason GH, Vaag A, et al. Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011;32:1900–1908.

    Article  CAS  PubMed  Google Scholar 

  6. Horsdal HT, Sondergaard F, Johnsen SP, Rungby J. Antidiabetic treatments and risk of hospitalization with myocardial infarction: a nationwide case-control study. Pharmacoepidemiol Drug Saf. 2011;20:331–337.

    Article  CAS  PubMed  Google Scholar 

  7. Phung OJ, Schwartzman E, Allen RW, Engel SS, Rajpathak SN. Sulphonylureas and risk of cardiovascular disease: systematic review and meta-analysis. Diabet Med. 2013;30:1160–1171.

    Article  CAS  PubMed  Google Scholar 

  8. FDA. Guidance for industry: Diabetes mellitus. Evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071627.pdf. Published December 2008. Accessed July 8, 2014.

  9. European Medicines Agency. Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/06/WC500129256.pdf. Published May 2012. Accessed July 8, 2014.

  10. Cardiac Safety Research Consortium. https://www.cardiac-safety.org. Accessed July 8, 2014.

  11. Finkle J, Bloomfield D, Uhl K, et al. New precompetitive paradigms: focus on cardiac safety. Am Heart J. 2009;157:825–826.

    Article  PubMed  Google Scholar 

  12. Sahlroot JT. FDA experience with the diabetes guidance: statistical update. Presentation at: Cardiovascular Safety and State-of-the-art Development Issues; April 17, 2012; Washington, DC.

  13. Cox DR. Regression models and life tables (with discussion). J R Stat Soc Ser B. 1972;34:187–220.

    Google Scholar 

  14. FDA (CDER). Summary review(s) for canagliflozin: application number: 204042Orig1s000. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/204042Orig1s000SumR.pdf. Accessed July 8, 2014.

  15. Hirshberg B, Raz I. Impact of the US food and drug administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care. 2011;34(suppl 2):S101–S106.

    Article  PubMed  PubMed Central  Google Scholar 

  16. FDA. Guidance for industry: Diabetes mellitus. Developing drugs and therapeutic biologics for treatment and prevention. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm071624.pdf. Published February 2008. Accessed July 8, 2014.

  17. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368:29–36.

    Article  PubMed  Google Scholar 

  18. Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the AHA Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–2169.

    Article  PubMed  Google Scholar 

  19. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. 2013;382:339–352.

    Article  PubMed  Google Scholar 

  20. Preiss D, Sattar N, McMurray JJ. A systematic review of event rates in clinical trials in diabetes mellitus: the importance of quantifying baseline cardiovascular disease history and proteinuria and implications for clinical trial design. Am Heart J. 2011;161:210–219.

    Article  PubMed  Google Scholar 

  21. Stevens RJ, Kothari V, Adler AI, Strattion IM, Holman RR; United Kingdom Prospective Diabetes Study (UKPDS) Group. The UKPDS risk engine: a model for the risk of coronary heart disease in type II diabetes (UKPDS 56). Clin Sci (London). 2001;101:671–679.

    Article  CAS  Google Scholar 

  22. Donnan PT, Donnelly L, New JP, Morris AD. Derivation and validation of a prediction score for major coronary heart disease events in a UK type 2 diabetic population. Diabetes Care. 2006;29:1231–1236.

    Article  PubMed  Google Scholar 

  23. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97:1837–1847.

    Article  CAS  PubMed  Google Scholar 

  24. Balkau B, Hu G, Qiao Q, Tuomilehto J, Borch-Johnsen K, Pyorala K. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor: the DECODE Study. Diabetologia. 2004;47:2118–2128.

    Article  CAS  PubMed  Google Scholar 

  25. Van Dieren S, Beulens JSJ, Kengne AP, et al. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart. 2012;98(5);360–369.

    Article  PubMed  Google Scholar 

  26. Chamnan R, Simmons RK, Sharp SJ, Griffin SJ, Wareham NJ. Cardiovascular risk assessment scores for people with diabetes: a systematic review. Diabetologia. 2009;52:2001–2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–2572.

    Article  Google Scholar 

  28. ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364:818–828.

    Article  Google Scholar 

  29. Scirica BM, Bhatt DL, Braunwald E, et al.; SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–1326.

    Article  CAS  PubMed  Google Scholar 

  30. White WB, Cannon CP, Heller SR, et al; for the EXAMINE Investigators. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369:1327–1335.

    Article  CAS  PubMed  Google Scholar 

  31. Pfeffer MA, Burdmann EA, Chen CY, et al; for the TREAT Investigators. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N Engl J Med. 2009;361(21):2019–2032.

    Article  PubMed  Google Scholar 

  32. Yang F, Ye J, Pomerantz K, Stewart M. Potential modification of the UKPDS risk engine and evaluation of macrovascular event rates in controlled clinical trials. Diabetes Metab Syndr Obes. 2013:6;247–256.

    Article  PubMed  PubMed Central  Google Scholar 

  33. CANVAS. Canagliflozin Cardiovascular Assessment Study. http://clinicaltrials.gov/ct2/show/NCT01032629?term=CANVAS&rank=1. Accessed July 8, 2014.

  34. Janssen Research & Development LLC. Endocrinology and Metabolic Drugs Advisory Committee. http://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/endocrinologicandmetabolicdrugsadvisorycommittee/ucm334551.pdf. Accessed July 8, 2014.

  35. FDA. Briston-Myers Squibb / AstraZeneca background document: Dapagliflozin. US FDA Endocrinologic & Metabolic Advisory Committee Meeting, 19 July 2011. http://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/endocrinologicandmetabolicdrugsadvisorycommittee/ucm262996.pdf. Accessed April 14, 2014.

  36. Multicenter Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events (DECLARE-TIMI 58). http://clinicaltrials.gov/ct2/show/NCT01730534?term=dapagliflozin&cond=cardiovascular&rank=1. Accessed July 8, 2014.

  37. FDA. Bristol-Myers Squibb / AstraZeneca background document: Dapagliflozin. US FDA Endocrine & Metabolic Advisory Committee Meeting, 13 Dec 2013. http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM378079.pdf. Accessed July 8, 2014

  38. Rosenstock J, Marx N, Kahn SE, et al. Cardiovascular outcome trials in type 2 diabetes and the sulphonylurea controversy: rationale for the active-comparator CAROLINA trial. Diab Vasc Dis Res. 2013;10:289–301.

    Article  PubMed  CAS  Google Scholar 

  39. FDA. Prescribing information for glimepiride tablets. http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020496s021lbl.pdf. Accessed July 8, 2014.

  40. FDA. 21CFR310.517. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=310.517. Accessed July 8, 2014.

  41. FDA (CDER). Summary review for linagliptin: application number: 201280Orig1s000. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/201280Orig1s000SumR.pdf. Accessed July 8, 2014.

  42. CARMELINA: Cardiovascular and Renal Microvascular Outcome Study With Linagliptin in Patients With Type 2 Diabetes Mellitus at High Vascular Risk. http://clinicaltrials.gov/ct2/show/NCT01897532?term=linagliptin&cond=cardiovascular&rank=2. Accessed July 8, 2014.

  43. FDA. Guidance for industry: adaptive design clinical trials for drugs and biologics. February 2010 (draft). http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm201790.pdf. Accessed July 8, 2014.

  44. Informa Business Information Inc. The pink sheet: cardiovascular outcomes data transparency vexes FDA, sponsors. http://www.pharmamedtechbi.com/publications/the-pink-sheet/76/25/cardiovascular-outcomes-data-transparency-vexes-fda-sponsors. Published June 23, 2014. Accessed July 8, 2014.

  45. FDA. Meetings, conferences, and workshops (drugs). http://www.fda.gov/drugs/newsevents/ucm132703.htm. Accessed July 8, 2014.

  46. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–188.

    Article  CAS  PubMed  Google Scholar 

  47. Walker E, Hernandez AV, Kattan MW. Meta-analysis: its strengths and limitations. Cleve Clin J Med. 2008;75:431–439.

    Article  PubMed  Google Scholar 

  48. Turner JR, Durham TA. Meta-methodology: conducting and reporting meta-analyses. J Clin Hypertens (Greenwich). 2014;16:91–93.

    Article  Google Scholar 

  49. Smith CT, Williamson PR, Marson AG. Investigating heterogeneity in an individual patient data meta-analysis of time to event outcomes. Stat Med. 2005;24:1307–1319.

    Article  PubMed  Google Scholar 

  50. Whitehead A. Meta-analysis of Controlled Clinical Trials. Chichester, England: John Wiley & Sons, 2002.

    Book  Google Scholar 

  51. Tian L, Cai T, Pfeffer MA, et al. Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2x2 tables with all available data but without artificial continuity correction. Biostatistics. 2009;10:275–281.

    Article  PubMed  Google Scholar 

  52. Wiens BL, Zhao W. The role of intention to treat in analysis of noninferiority studies. Clin Trials. 2007;4:286–291.

    Article  PubMed  Google Scholar 

  53. D’Agostino RB, Massaro JM, Sullivan LM. Non-inferiority trials: design concepts and issues—the encounters of academic consultants in statistics. Stat Med. 2003;22:169–186.

    Article  PubMed  Google Scholar 

  54. Brittain E, Lin D. A comparison of intent-to-treat and per-protocol results in antibiotic non-inferiority trials. Stat Med. 2005;24:1–10.

    Article  PubMed  Google Scholar 

  55. Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70;659–663.

    Article  Google Scholar 

  56. O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35:549–556.

    Article  PubMed  Google Scholar 

  57. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977:64:191–199.

    Article  Google Scholar 

  58. Haybittle JL. Repeated assessment of results in clinical trials of cancer treatment. Brit J Radiol. 1971;44:793–797.

    Article  CAS  PubMed  Google Scholar 

  59. Jennison C, Turnbull BW. Group Sequential Methods With Applications to Clinical Trials. Boca Raton, FL: Chapman & Hall/CRC; 2000.

    Google Scholar 

  60. Menon V, Lincoff MA. Cardiovascular safety evaluation in the development of new drugs for diabetes mellitus. Circulation. 2014;129:2705–2713.

    Article  PubMed  Google Scholar 

  61. Sanofi. Press release: Sanofi provides update on lixisenatide new drug application in US. http://m-en.sanofi.com/Images/33756_20130912_lixisenatide_en.pdf. Accessed July 8, 2014.

  62. Harvard School of Public Health. 2014 Pharmaceutical & Regulatory Sciences Workshop. http://www.hsph.harvard.edu/prs-workshop/. Accessed July 8, 2014.

  63. Harvard School of Public Health. Workshop Series. http://www.hsph.harvard.edu/merck-workshop/workshop-series/. Accessed July 8, 2014.

  64. Uno H, Claggett B, Tian L, et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis [published online June 30, 2014]. J Clin Oncol.

  65. Royston P, Parmar M. The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Stat Med. 2011;30:2409–2421.

    Article  PubMed  Google Scholar 

  66. Zhao L, Tian L, Uno H, Solomon S, Pfeffer MA, Schindler JS, Wei LJ. Utilizing the integrated difference of two survival functions to quantify the treatment contrast for designing, monitoring, and analyzing a comparative clinical study. Clinical Trials. 2012;9:570–577.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jane Geiger MD, PhD, FACP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiger, M.J., Mehta, C., Turner, J.R. et al. Clinical Development Approaches and Statistical Methodologies to Prospectively Assess the Cardiovascular Risk of New Antidiabetic Therapies for Type 2 Diabetes. Ther Innov Regul Sci 49, 50–64 (2015). https://doi.org/10.1177/2168479014549860

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/2168479014549860

Keywords

Navigation